Acta Neuropathologica

, Volume 17, Issue 3, pp 234–247 | Cite as

Electron microscopic study of the development of human foetal muscle, motor end-plate and nerve

Preliminary report
  • Anna Fidziańska
Original Investigations


Electron microscopic observations were made on muscle and peripheral nerve of human embryos of the period between the 9th and 16th week. These observations showed the presence of motor end-plates at the 10th week of human embryonic life, at a time when the muscle cells were still in the myotube stage. The difference between the structure of nerve fibres of the 9th and those of the 16th week of foetal life consisted in a change from the form of one multiaxon bundle to single axons separated from each other by an intracellular space filled with collagen fibres.


Human Foetal Muscle Electron Microscopy Myotube Motor End-Plate 


An menschlichen Embryonen von 9–16 Wochen Alter wurden elektronenmikroskopische Untersuchungen von Muskeln und peripheren Nerven durchgeführt. Sie zeigten das Auftreten von motorischen Endplatten in der 10. Embryonalwoche, zu einem Zeitpunkt, wo der Muskel noch in myotubulären Stadium ist. Der Unterschied in der Struktur der Nervenfasern zwischen der 9. und der 16. Woche des Fetallebens besteht im Übergang aus der Form eines Multiaxonbündels zu Einzelaxonen, die voneinander durch einen intracellulären, von Kollagenfasern erfüllten Raum getrennt werden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. D., Denny-Brown, D., Pearson, C.: Disease of muscle, 2nd ed., p. 15. New York: Hoeber 1962.Google Scholar
  2. Alen, E. R., Pepe, F. A.: Ultrastructure of developing muscle cells in the chick embryo. Amer. J. Anat.116, 115–145 (1965).Google Scholar
  3. Beckett, E. B., Bourne, G. H.: Some histochemical observations on enzyme reactions in goat foetal cardiac and skeletal muscle and some human foetal muscle. Acta anat. (Basel),35, 224–253 (1958).Google Scholar
  4. Bergman, R. A.: Observations on the morphogenesis of rat skeletal muscle. Bull. Hopkins Hosp.110, 187–190 (1952).Google Scholar
  5. Cuajunco, F.: Development of the human motor end plate. Contr. Embryol. Carneg. Inst.30, 127–152 (1942).Google Scholar
  6. Dubowitz, V.: Enzymatic maturation of skeletal muscle. Nature (Lond.)197, 1215 (1963).Google Scholar
  7. —, Pearse, A. G.: Histochemical aspects of muscle diseases. Developing muscle. Disorders of voluntary muscle, pp. 206–207. Boston: J. N. Walton 1964.Google Scholar
  8. Fenichel, G. M., Engel, W. K.: Histochemistry of infantile spinal muscle atrophy. Neurology (Minneap.)13, 1059–1066 (1963).Google Scholar
  9. Fischmann, D. A.: An electron microscope study of myofibrils formation in embryonic chick skeletal muscle. J. Cell Biol.32, 557–575 (1967).Google Scholar
  10. Forst, J. L.: Electron microscopy of developing skeletal muscle. Bull. Johns Hopk. Hosp.94, 348–349 (1954).Google Scholar
  11. Gamble, H. J.: Further electron microscope studies of human foetal peripheral nerves. J. Anat. (Lond.)100, 487–502 (1966).Google Scholar
  12. Holtzer, H., Marshal, J. M., Fink, H.: Analysis of myogenesis by the use of fluorescent antimyosin. J. biophys. biochem. Cytol.3, 705–724 (1957).Google Scholar
  13. Kamieniecka, Z.: The stages of development of human foetal muscle with reference to some muscular diseases. J. neurol. Sci.7, 319–329 (1968).Google Scholar
  14. Kelly, A. M., Zacks, S. I.: The development of the motor end-plate in the rat. J. Cell Biol.31 A, 114 (1966).Google Scholar
  15. ——: The histogenesis of rat intercostal muscle. J. Cell Biol.42, 135–154 (1969).Google Scholar
  16. ——: The fine structure of motor end-plate morphogenesis. J. Cell Biol.42, 154–169 (1969).Google Scholar
  17. Lindner, E.: Myofibrils in the early development of chick embryo heart as observed with the electron microscope. Anat. Rec.136, 234–235 (1961).Google Scholar
  18. Marinskaya, L. F.: Histochemical study of cholinesterase during development of skeletal muscles. Arkh. Anat. Gistol. Embriol.42, 30–35 (1962).Google Scholar
  19. Moscona, A.: Cytoplasmic granules in myogenic cells. Exp. Cell. Res.9, 377–383 (1955).Google Scholar
  20. Naville, A.: Histogenèse de la régéneration du muscle chez les Anoures. Arch. Biol. (Liège)32, 37–171 (1922).Google Scholar
  21. Ochoa, J., Mair, W. G. P.: “The ultrastructure of normal foetal muscle and foetal muscle from known dystrophic carriers”. The Procedings of the Fourthy Symposium on Current Research in Muscular Dystrophy held at the National Hospital, Queen Square, London, W.C. 1 11th–12th January 1968.Google Scholar
  22. Peters, A., Muir, A. R.: The relationship between axons and Schwann cells during development of peripheral nerves in the rat. Quart. exp. Physiol.44, 117–130 (1959).Google Scholar
  23. Przybylski, R. J., Blumberg, J. M.: Ultrastructural aspect of myogenesis in the chick. Lab. Invest.15, 836–886 (1966).Google Scholar
  24. Spiro, A. J., Shy, G. M., Gonatas, N. K.: Myotubular myopathy. Persistence of foetal muscle in an adolescent boy. Arch. Neurol. (Chic.)14, 1–14 (1966).Google Scholar
  25. Tello, J. F.: Genesis de las terminationes nervosa motrices y sensitivas. Trab. Lab. Invest. Bio. (Madrid)15, 101–199 (1917).Google Scholar
  26. Van Breemen, V. L.: Myofibril development observed with the electron microscope. Anat. Rec.113, 179–196 (1952).Google Scholar
  27. Zelena, J.: The effect of denervation on muscle development. The denervated muscle, pp. 103, 126, edit. by E. Gutman CSR. Prague: Acad. of Science 1962.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Anna Fidziańska
    • 1
  1. 1.Department of Neurology of the Medical AcademyWarsawPoland

Personalised recommendations