Acta Neuropathologica

, Volume 43, Issue 1–2, pp 111–117 | Cite as

Tumor specific fluorescent and complement-dependent cytotoxic antibodies in the serum of rats with chemically induced brain gliomas

  • D. Stavrou
  • A. P. Anzil
  • H. Elling
Original Investigations

Summary

Brain tumors were induced in Sprague-Dawley and Long-Evans rats by administration of N-methyl-N-nitrosourea in the drinking water. Of these tumors, a grade 2 mixed glioma, a grade 2 to 3 astrocytoma and a grade 1 to 2 oligodendroglioma were established in vitro, maintained in culture and designated 75SD-G-376, 75SD-G-420 and 77LE-G-180, respectively. Of these mass cultures, two were successfully cloned and are currently available as 75SD-G-376C and 75SD-420C cell lines. Clonal lines produce S-100 protein and grow as tumors when isografted in young rats.

Using the cultured cells as target cells, specific antibodies were searched for in the sera of the rats with the primary tumors by means of an indirect fluorescent antibody staining method and a complement-dependent antibody-mediated microcytotoxicity assay. Fluorescent and cytotoxic antibodies were demonstrated in the sera of the mixed glioma- and astrocytoma-bearing animals. However, a variable proportion of cells of the 75SD-G-376 and 75SD-G-420 lines showed no reaction with the corresponding sera. Furthermore, cytotoxic anfibodies had a lytic effect on the autologous glioma cells only in the presence of rabbit complement.

Key words

Experimental brain gliomas Chemically induced Rat Cell cultures Humoral antibodies Immunofluorescence staining Microcytotoxicity assay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amos, D. B., Bashir, H., Boyle, W., MacQueen, M., Tiilikainen, A.: A simple micro cytotoxicity test. Transplantation7, 220–223 (1969)Google Scholar
  2. Anzil, A. P., Stavrou, D.: Infection of newborn rat brain cells with a rat glioma associated virus. J. Neuropath. Exp. Neurol. (in press) (1978a)Google Scholar
  3. Anzil, A. P., Stavrou, D., Elling, H., Blinzinger, K.: Immune cytolysis: a thin-section study of rat glioma cells treated with antiserum and complement. In: Tumors of early life in man and animals (L. Severi, ed.). Perugia: Division of Cancer Research (in press) (1978b)Google Scholar
  4. Appella, E., Law, L. W.: Histocompatibility antigens and tumor-specific transplantation antigens. Exp. Cell Biol.44, 131–149 (1976)Google Scholar
  5. Baldwin, R. W.: Tumor-associated antigens. Z. Krebsforsch.89, 1–8 (1977)Google Scholar
  6. Baldwin, R. W., Price, M. R.: Immunology of rat neoplasia. Ann. N.Y. Acad. Sci.276, 3–10 (1976)Google Scholar
  7. Baldwin, R. W., Price, M. R.: Immunobiology of rat neoplasia. Ann. N. Y. Acad. Sci.276, 3–10 (1976)Google Scholar
  8. Coons, A. H.: The application of fluorescent antibodies to the study of naturally occurring antibodies. Ann. N. Y. Acad. Sci.69, 658–662 (1957)Google Scholar
  9. Druckrey, H., Ivankovic, S., Preussmann, R.: Selektive Erzeugung maligner Tumoren in Gehirn und Rückenmark von Ratten durch N-Methyl-N-Nitrosoharnstoff. Z. Krebsforsch.66, 389–408 (1965)Google Scholar
  10. Friedmann, I., Laufer, A.: Electron microscopical studies of the effect of antiheart antibodies and complement on beating heart cells in culture. J. Molec. Cell. Cardiol.8, 641–650 (1975)Google Scholar
  11. Götze, G., Ferrone, S., Reisfeld, R.: Serologic crossreactivity between H-2 and HL-A antigens. I. Specific reactivity of rabbit anti-HL-A sera against murine cells. J. Immunol.109, 439–450 (1972)Google Scholar
  12. Hawkins, H. K., Ericsson, J. L. E., Biberfeld, P., Trump, B. F.: Lysosome and phagosome stability in lethal cell injury. Morphologic tracer studies in cell injury due to inhibition of energy metabolism, immune cytolysis and photosensitization. Amer. J. Path.68, 255–278 (1972)Google Scholar
  13. Klein, G.: Immunological surveillance against tumors. In: Immunological aspects of neoplasia. Baltimore: Williams and Wilkins 1975Google Scholar
  14. Kornblith, P. L., Dohan, F. C., Jr., Wood, W. C., Whitman, B. O.: Human astrocytoma: serum-mediated immunologic response. Cancer33, 1512–1519 (1974)Google Scholar
  15. Kornblith, P. L.: Personal communication (1978)Google Scholar
  16. Levy, N. L., Mahaley, M. S., Jr., Day, E. D.: In vitro demonstration of cell-mediated immunity to human brain tumors. Cancer Res.32, 477–482 (1972)Google Scholar
  17. Mahaley, M. S., Jr.: Immunological aspects of the growth and development of human and experimental brain tumors. In: The experimental biology of brain tumors. Springfield: Thomas 1972Google Scholar
  18. Mahaley, M. S., Jr., Brooks, W. H., Roszman, T. L., Bigner, D. D., Dudka, L., Richardson, S.: Immunobiology or primary intracranial tumors. I. Studies of the cellular and humoral general immune competence of brain tumor patients. J. Neurosurg.46, 467–476 (1977)Google Scholar
  19. Reichner, H.: Zur Frage der serologischen Unterscheidung zwischen infiltrierendem Neoplasma (Gliom) und normalem Gewebe des Hirns. Z. Immunitätsforsch.80, 86–95 (1933)Google Scholar
  20. Ridley, A., Cavanagh, J. B.: Lymphocytic infiltration in gliomas—Evidence of possible host resistance. Brain94, 117–124 (1971)Google Scholar
  21. Rodt, H., Thierfelder, S., Thiel, E., Götze, D., Netzel, B., Huhn, D., Eulitz, M.: Identification and quantitation of human T-cell antigen by antisera purified from antibodies crossreacting with hemopoietic progenitors and other blood cells. Immunogenetics2, 411–430 (1975)Google Scholar
  22. Schiffer, D., Croveri, G., Pautasso, C.: Frequenza e significato degli infiltrati linfo-plasmace ilulari nei gliomi umani. Tumori60, 177–184 (1974)Google Scholar
  23. Stavrou, D.: Beitrag zur Morphologie und Enzymhistochemie experimenteller Tumoren des Zentralnervensystems der Ratte. I. Morphologische Befunde. Acta neuropath. (Berl.)15, 220–230 (1970)Google Scholar
  24. Stavrou, D.: Mögliche immunologische Aspekte bei experimentellen neurogenen Tumoren. Zbl. allg. Path.120, 535 (1976)Google Scholar
  25. Stavrou, D., Anzil, A. P., Weidenbach, W., Rodt, H.: Immunofluorescence study of lymphocytic infiltration in gliomas. Identification of T-lymphocytes. J. neurol. Sci.33, 275–282 (1977a)Google Scholar
  26. Stavrou, D., Elling, H., Osterkamp, U.: Cytotoxische Antikörper gegen experimentelle Gliome. Zbl. allg. Path.121, 568 (1977b)Google Scholar
  27. Stavrou, D., Osterkamp, U., Schröder, B., Anzil, A. P., Zänker, K.: Selected morphological immunocytochemical and growth characteristics of three experimental rat gliomas and of their cells in vitro. Exp. Cell Biol. (in press)Google Scholar
  28. Thomson, D. M. P.: Soluble tumour-specific antigen and its relationship to tumour growth. Int. J. Cancer15, 1016–1029 (1975)Google Scholar
  29. Trouillas, P.: Carcino-fetal antigen in glial tumours. Lancet2, 552 (1971)Google Scholar
  30. Wahlström, T., Saksela, E., Troupp, H.: Cell-bound antiglial immunity in patients with malignant tumors of the brain. Cell Immunol.6, 161–170 (1973)Google Scholar
  31. Woosley, R. E., Mahaley, M. S., Jr., Mahaley, J. L., Miller, G. M., Brooks, W. H.: Immunobiology of primary intracranial tumors. Part 3: Microcytotoxicity assays of specific responses of brain tumor patients. J. Neurosurg.47, 871–885 (1977)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • D. Stavrou
    • 1
  • A. P. Anzil
    • 2
  • H. Elling
    • 1
  1. 1.Lehrstuhl für Allgemeine Pathologie und Neuropathologie am Institut für Tierpathologie der Ludwig-Maximilians-Universität MünchenMünchen 22Federal Republic of Germany
  2. 2.Max-Planck-Institut für PsychiatrieMünchen 40Federal Republic of Germany

Personalised recommendations