Acta Neuropathologica

, Volume 62, Issue 1–2, pp 31–40 | Cite as

Specific ultrastructural markers of human pinealomas

A study of four cases
  • J. Hassoun
  • D. Gambarelli
  • J. C. Peragut
  • M. Toga
Original Works


An ultrastructural study of four pinealomas was carried out to precise eventual specific markers. Dark and clear cells joined with zonulae adherents, extensive and pleiomorphous processes, a complex vacuolar system, and characteristic organelles (lysosome-like structures, clear and dense-core vesicles, vesicle-crowned rodlets and related structures, microtubular sheaves and centriolar derivatives, membranous whorls, fibrous bodies, microtubules, heterogeneous cytoplasmic inclusions) offered a typical pattern. No correlation could be made between the histological and ultrastructural features. The authors stress the ultrastructural similarities between the human tumor cells and the mammalian pineal cells. Pinealomas appeared as a morphological entity distinct from neuronal and astrocytic tumors.

Key words

Human pinealomas Ultrastructure Specific markers Pinealocyte 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borit A, Blackwood W (1979) Pineocytoma with astrocytomatous differentiation. J Neuropathol Exp Neurol 38:253–258Google Scholar
  2. Duffy PE, Tennyson VM (1965) Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus coeruleus in Parkinson's disease. J Neuropathol Exp Neurol 24:398–414Google Scholar
  3. Hassoun J, Gambarelli D, Grisoli F, Pellet W, Salamon G, Pellissier JF, Toga M (1982) Central neurocytoma. An electron microscopic study of two cases. Acta Neuropathol (Berl) 56:151–156Google Scholar
  4. Herrick MK, Rubinstein LJ (1979) The cytological differentiating potential of pineal parenchymal neoplams (true pinealomas). Brain 102:289–320Google Scholar
  5. Hewing M (1980) Synaptic ribbons in the pineal system of normal and light deprived golden hamsters. Anat Embryol 159:71–80Google Scholar
  6. Hirano A (1971) Electron microscopy in neuropathology. In: Zimmerman HM (ed) Progress in neuropathology. Heineman, London, pp 1–61Google Scholar
  7. Karasek M (1976) Quantitative changes in number of “synaptic ribbons” in rat pinealocytes after orchidectomy and in organ cultures. J Neural Transm 38:149–157Google Scholar
  8. Karasek M, Vollrath L (1982) “Synaptic” ribbons and spherules of the rat pineal gland: day/night changes in vitro. Exp Brain Res 46:205–208Google Scholar
  9. King TS, Dougherty WJ (1982) Effect of denervation on “synaptic” ribbon population in the rat pineal gland. J Neurocytol 11:19–28Google Scholar
  10. Kline KT, Damjanov I, Moriber-Katz S, Schmidek H (1979) Pineoblastoma: an electron-microscopic study. Cancer 44:1692–1699Google Scholar
  11. Kurumado K, Mori W, Matsutani M, Sano K (1976) Virus-like particles in human pinealoma. Acta Neuropathol (Berl) 35:273–276Google Scholar
  12. Loewenthal A, Flament-Durand J, Karcher D, Noppe M, Brion JP (1982) Glial cells identified by anti-α-albumin (anti GFA) in human pineal gland. J Neurochem 38:863–865Google Scholar
  13. Markesberry MR, Haugh RM, Young AB (1981) Ultrastructure of pineal parenchyma neoplasms. Acta Neuropathol (Berl) 55:143–149Google Scholar
  14. Møller M (1974) The ultrastructure of the human fetal pineal gland. I. Cell types and blood vessels. Cell Tiss Res 152:13–30Google Scholar
  15. Møller M (1976) The ultrastructure of the human fetal pineal gland. II. Innervation and cell junctions. Cell Tiss Res 169:7–21Google Scholar
  16. Møller M, Ingild A, Bock E (1978) Immunohistochemical demonstration of S-100 protein and GFA protein in interstitial cells of rat pineal gland. Brain Res 140:1–13Google Scholar
  17. Moses HL, Ganote CE, Beaver DL, Schuffman SS (1966) Light and electron microscopic studies of pigment in human and rhesus monkey substantia nigra and locus coeruleus. Anat Rec 155:167–184Google Scholar
  18. Neuwelt EA, Glasberg M, Frenkel E, Kemp Clark W (1979) Malignant pineal region tumors. A clinico-pathological study. J Neurosurg 5:597–607Google Scholar
  19. Nielsen SL, Wilson WB (1975) Ultrastructure of a “pineocytoma”. J Neuropathol Exp Neurol 34:148–158Google Scholar
  20. Pevet P (1979) Secretory processes in the mammalian pinealocytes under natural and experimental conditions. Prog Brain Res 52:149–194Google Scholar
  21. Pevet P (1981) Ultrastructure of the mammalian pinealocyte. In: Reiter RJ (ed) The pineal gland, vol 1. Anatomy and biochemistry. CRC Press, Boca Raton, pp 121–148Google Scholar
  22. Romijn HJ, Mud MT, Wolters PS (1976) Electron microscopic evidence of glycogen storage in the dark pinealocytes of the rabbit pineal gland. J Neural Transm 38:231–237Google Scholar
  23. Rubinstein LJ, Herman MM (1972) A light and electron microscopic study of a temporal lobe ganglioglioma. J Neurol Sci 16:27–48Google Scholar
  24. Rubinstein LJ (1981) Cytogenesis and differentiation of pineal neoplasms. Human Pathol 12:441–448Google Scholar
  25. Ruiz-Navarro A, Blance-Rodriguez A, Gasquez-Ortiz A, Jover-Moyano A (1982) Synaptic ribbons in pinealocytes of castrated rates and rats treated with estradiol. Cell Biol Int Rep 6:629–633Google Scholar
  26. Russel DS, Rubinstein LJ (1963) Pathology of tumours of the nervous system. E Arnold, London, pp 173–181Google Scholar
  27. Samorajski T, Ordy JM, Keefe JR (1974) The fine structure of lipofuscin age pigment in the nervous system of aged mice. In: Nanda BS (ed) Aging pigment, current reseacch: 1: MSS Information, New York, pp 141–166Google Scholar
  28. Shin WY, Laufer H, Lee YC, Aftalion B, Hirano A, Zimmerman HM (1978) Fine structure of a cerebellar neuroblastoma. Acta Neuropathol (Berl) 42:11–13Google Scholar
  29. Varakis JN, Zu Rhein GM (1976) Experimental pineocytoma of the Syrian hamster induced by a human papovavirus (JC). A light and electron microscopic study. Acta Neuropathol (Berl) 35:243–264Google Scholar
  30. Velasco ME, Roessmann V, Gambetti P (1982) The presence of glial fibrillary acidic protein in the human pituitary gland. J Neuropathol Exp Neurol 41:150–163Google Scholar
  31. Vollrath L (1973) Synaptic ribbons of a mammalian pineal gland. Circadian changes. Z Zellforsch 145:171–183Google Scholar
  32. Welsh MG, Reiter RJ (1978) The pineal gland of the gerbil Merions unguiculatus. I. An ultrastructural study. Cell Tiss Res 193:323–336Google Scholar
  33. Wolfe DE (1965) The epiphyseal cell: an electron microscopic study of its intercellular relationships and intracellular morphology in the pineal body of the albino rat. Prog Brain Res 10:332–386Google Scholar
  34. Wurtman RJ, Axelrold J, Kelly DE (1968) The pineal. Academic Press, New York London, pp 20–23Google Scholar
  35. Yagishita S, Itoh Y, Chiba Y, Kuwana N (1982) Morphological investigations on cerebellar “neuroblastoma” group. Acta Neuropathol (Berl) 56:22–28Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. Hassoun
    • 1
  • D. Gambarelli
    • 1
  • J. C. Peragut
    • 2
  • M. Toga
    • 1
  1. 1.Laboratory of NeuropathologyFaculté TimoneMarseilleFrance
  2. 2.Department of Functional NeurosurgeryCHU TimoneMarseilleFrance

Personalised recommendations