Acta Neuropathologica

, Volume 4, Issue 2, pp 175–190 | Cite as

Degeneration and regeneration of myelinated fibers in the cerebral and cerebellar cortex following damage from ionizing particle radiation

  • Juan F. Estable-Puig
  • Rosita F. de Estable
  • Cornelius Tobias
  • Webb Haymaker
Original Investigations

Summary

This study was concerned, on the one hand, with the effects of 48-Mev alphaparticle radiation, at a 6000 rad surface dose and a 30000 rad peak dose, on nerve fibers of the cerebral and cerebellar cortex and, on the other hand, with subsequent nerve-fiber regeneration.

Striking demyelination in the irradiated part of the cortex was already evident at the 96-hour period, but was most prominent in the region of maximal energy release, i.e., in the “Bragg-peak band”. In time, the demyelination became still more profound. The myelin destruction was considered to be due chiefly to a direct effect of ionizing events on the myelin. Axis cylinders were much less radiovulnerable than the myelin.

At about the 16th day after irradiation, a regenerative process was underway. Evidence was obtained that pre-existing axis cylinders that had lost their myelin became remyelinated. Myelinated nerve sprouts issuing chiefly from afferent fibers beneath the band began populating the band at this time period and grew progressively within it. The end-stage of fiber regrowth was considered to be between the 4th and 7th month after irradiation.

The new growth was considered an expression of an innate capacity possessed by the central nervous system for continual axonal regrowth.

Only reactive microglia-like cells were present in abundance in the region of axonal regrowth. Whether oligodendroglia had any influence on the remyelination cannot be stated.

Similar changes were found to occur in cerebellar cortex under the same experimental conditions.

Keywords

Cerebellar Cortex Myelinated Fiber Axis Cylinder Surface Dose Peak Dose 

Résumé

Cette étude décrit les effets délétères des particules alpha avec des doses de 6.000r avec une énergie de 48 Mev sur les fibres nerveuses et sur les gaines myéliniques de l'écorce cérébrale et cerebelleuse, aussi bien que la régénération consécutive des fibres nerveuses.

Une demyélinisation frappante est manifeste 96 heures après l'irradiation, spécialement au niveau de la bande du »pic de Bragg« correspondant à la zone dans laquelle la libération de l'énergie est à son maximum. Avec le temps la demyélinisation s'accroit. La destruction de la myéline semble due principalement à l'atteinte cellulaire directe.

Les axones semblaient beaucoup moins vulnérables à l'irradiation que la myéline.

Quelques 16 jours après l'irradiation un processus de régénération apparaissait.

Nos recherches parlent en faveur d'une rémyélinisation des cylindres-axes préexistants. En même temps des fibres néoformées myélinisées, qui prenaient leur origine des fibres afferents en dessous de la »bande« sous-mentionnée, commençaient à peupler la bande et augmentaient progressivement. La régénération finissait entre le 4ème et le 7ème mois après l'irradiation. Dans la région de la régénération il n'y avait que de cellules semblables à la microglie réactive. On ne pouvait pas préciser si l'oligodendroglie prenait une influence sur la néoformation ou rémyélinsation.

Le cortex cerebelleux présentait de changements semblables sous les mêmes conditions experimentales.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, C. P., H. J. Curtis, andW. Zeman: The design and calibration of a deuteron microbeam for biological studies. Radiat. Res.15, 489–495 (1961).Google Scholar
  2. Bunge, M. B., R. P. Bunge, andV. H. Ris: Ultrastructural study of remyelination in an experimental lesion in an adult cat spinal cord. J. biophys. biochem. Cytol.10, 67–94 (1961).Google Scholar
  3. Cajal, Ramón y, S.: Degeneration and regeneration of the nervous system. (Transl. and edited by R. M. May) Vol. 2, p. 639. Oxford: Oxford Univ. Press 1928.Google Scholar
  4. Estable-Puig, J. F., W. Bauer, J. Blumberg, W. Haymaker, andC. Tobias: Study of regenerated cortical nervous tissue after alpha particle irradiation. In: Proc. 5th Internat. Congr. Electron Microscopy vol. 2 Biology p. VV-4. New York: Academic Press 1962.Google Scholar
  5. Janssen, P., I. Klatzo, J. Miquel, T. Brustad, A. Behar, W. Haymaker, J. Lyman, J. Henry, andC. Tobias: Pathological changes in the brain from exposure to alpha particles from a 60-inch cyclotron. In: Response of the Nervous System to Ionizing Radiation (T. J. Haley andR. S. Snider eds.) p. 383–409. New York: Academic Press 1962.Google Scholar
  6. Klatzo, I., J. Miquel, W. Haymaker, C. Tobias, andL. S. Wolfe: Observations on appearance of histochemically-demonstrable glycogen in the rat brain as effect of alphaparticle irradiation. In: Effects of Ionizing Radiation on the Nervous System p. 309–358. Vienna: IAEA 1962.Google Scholar
  7. ——,C. Tobias, andW. Haymaker: Effects of alpha particle radiation on the rat brain, including vascular permeability and glycogen studies. J. Neuropath. exp. Neurol.20, 459–483 (1961).Google Scholar
  8. Lafora, G. R.: Neoformaciones dendriticas en las neuronas y alteraciones de la neuroglia en el perro senil. Trab. Lab. invest. biol.12, 39–53 (1914).Google Scholar
  9. Malis, L. I., C. P. Baker, L. Kruger, andJ. E. Rose: Effects of heavy, ionizing, monoenergetic particles on the cerebral cortex. I. Production of laminar lesions and dosimetric considerations. J. comp. Neurol.115, 219–242 (1960).Google Scholar
  10. —,L. Kruger, andJ. E. Rose: The use of deuterons in production of laminar lesions in the cerebral cortex of the rabbit. Trans. Amer. neurol. Ass.83, 78–80 (1958).Google Scholar
  11. —,R. Loevinger L. Kruger, andJ. E. Rose: Production of laminar lesions in the cerebral cortex by heavy, ionizing particles. Science126, 302–303 (1957).Google Scholar
  12. —,J. E. Rose, L. Kruger, andC. P. Baker: Production of laminar lesions in the cerebral cortex by deuteron irradiation. In: Response of the Nervous System to Ionizing Radiation (T. J. Haley andR. S. Snider eds.) p. 359–368. New York: Academic Press 1962.Google Scholar
  13. Miquel, J., andW. Haymaker: Astroglial reactions to ionizing radiation. In: Sympos. Internac. Invest. Neurológicas, Buenos Aires, Oct. 17–18, 1963.Google Scholar
  14. Rose, J. E., L. I. Malis, andC. P. Baker: Neural growth in the cerebral cortex after lesions produced by monoenergetic deuterons. In: International Symposium on Sensory Communication, 1961 (W. A. Rosenbluth, ed.), p. 279–301. New York: Wiley 1961.Google Scholar
  15. ——,L. Kruger, andC. P. Baker: Effects of heavy, ionizing, monoenergetic particles on the cerebral cortex. II. Histological appearance of laminar lesions and growth of nerve fibers after laminar destructions. J. comp. Neurol.115, 243–296 (1960).Google Scholar
  16. Spatz, H.: Morphologische Grundlagen der Restitution im Zentralnervensystem. Dtsch. Z. Nervenheilk.115, 197–231 (1931).Google Scholar
  17. Tobias, C. A.: The use of accelerated heavy particles for production of radiolesions and stimulation of the central nervous system. In: Response of the Nervous System to Ionizing Radiation (T. J. Haley andR. S. Snider, eds.) p. 325–343. New York: Academic Press 1962.Google Scholar
  18. Wolfe, L. S., I. Klatzo, J. Miquel, C. Tobias, andW. Haymaker: Effect of alpha-particle irradiation on brain glycogen in the rat. J. Neurochem.9, 213–218 (1962).Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • Juan F. Estable-Puig
    • 1
    • 2
  • Rosita F. de Estable
    • 1
    • 2
  • Cornelius Tobias
    • 1
    • 2
    • 3
  • Webb Haymaker
    • 1
    • 2
    • 3
  1. 1.Armed Forces Institute of PathologyWashington, D.C.
  2. 2.Donner LaboratoryUniversity of CaliforniaBerkeley
  3. 3.Ames Research CenterNational Aeronautics and Space AdministrationMoffett Field

Personalised recommendations