Applied Physics B

, Volume 47, Issue 2, pp 201–206 | Cite as

Anomalous linewidths and peak-height ratios in137Ba hyperfine lines

  • B. D. Cannon
  • T. J. Whitaker
  • G. K. Gerke
  • B. A. Bushaw
Contributed Papers


We have investigated several effects of optical pumping in the hyperfine spectrum of the6s6p1P1⇔6s21S0 transition in137Ba. Most of these effects are explained by absorption strength changes which occur because of redistribution of population among magnetic substates. At very low laser intensities, no redistribution effects are observed. At higher intensities, it is possible to either empty the magnetic substates that are accessible to optical excitation, or to redistribute the population among these states until a steady-state condition is achieved. The first case results in the familiar disappearance of a hyperfine line. The less familiar second case can result in peak-height ratios in the Ba1P11S0 hyperfine spectrum that differ by almost a factor of three from the low-intensity case. In this second case, the observed linewidth can either broaden or narrow, depending on whether redistribution decreases or increases absorption strength. At high intensities, saturation effects dominate and branching to intermediateD states becomes apparent. We report here the result of a numerically integrated rate equation model which shows good agreement with our experiments.


32.70.Jz 35.10.Fk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Happer: Rev. Mod. Phys.44, 169–249 (1972)Google Scholar
  2. 2.
    A. Fischer, I.V. Hertel: Z. Phys. A304, 103–117 (1982)Google Scholar
  3. 3.
    J.J. McClelland, M.H. Kelley: Phys. Rev. A31, 3704–3710 (1985)Google Scholar
  4. 4.
    B.A. Bushaw, B.D. Cannon, G.K. Gerke, T.J. Whitaker: Opt. Lett.11, 422–425 (1986)Google Scholar
  5. 5.
    V.I. Balykin: Opt. Commun.33, 31 (1980)Google Scholar
  6. 6.
    I.V. Hertel, W. Stoll: Adv. At. Mol. Phys.13, 113 (1978)Google Scholar
  7. 7.
    A. Fischer, I.V. Hertel: Z. Phys. A304, 103 (1982)Google Scholar
  8. 8.
    W.R. MacGillivray, M.C. Standage: Opt. Commun.36, 189 (1981)Google Scholar
  9. 9.
    E.U. Condon, H.H. Shortley:The Theory of Atomic Spectra (Cambridge University Press, New York 1970) pp. 73–78Google Scholar
  10. 10.
    E.U. Condon, G.H. Shortley:The Theory of Atomic Spectra (Cambridge University Press, New York 1970) p. 76Google Scholar
  11. 11.
    M. Tinkham:Group Theory and Quantum Mechanics (McGraw-Hill, New York 1965) p. 124Google Scholar
  12. 12.
    G.K. Gerke, B.A. Bushaw: Phys. Rev. A37, 1502–1506 (1988)Google Scholar
  13. 13.
    L. Jahreiss, M.C.E. Huber: Phys. Rev. A31, 692 (1985)Google Scholar
  14. 14.
    G. Nowicki, K. Bekk, S. Goring, A. Hanser, H. Rebel, G. Schatz: Phys. Rev. C18, 2369–2379 (1978)Google Scholar
  15. 15.
    C.M. Miller, R. Engleman, Jr., R.A. Keller: J. Opt. Soc. Am. B2, 1503–1509 (1985)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • B. D. Cannon
    • 1
  • T. J. Whitaker
    • 1
  • G. K. Gerke
    • 1
  • B. A. Bushaw
    • 1
  1. 1.Pacific Northwest LaboratoryRichlandUSA

Personalised recommendations