Advertisement

Journal of Low Temperature Physics

, Volume 65, Issue 5–6, pp 399–423 | Cite as

The effect of the resonant mode structure on flux tunneling in SQUIDs

  • A. I. M. Rae
  • C. E. Gough
Article

Abstract

The problem of macroscopic quantum tunneling in SQUIDs is discussed, taking into account the resonant mode structure of typical devices. These are evaluated for the particular case of a SQUID formed from a conical point intersecting a hemispherical cavity, and it is shown that the conventional representation of a SQUID as a Josephson junction in parallel with an inductor and a capacitor is a good first approximation in most cases, provided the inductance and capacitance used are those of the whole device rather than of the weak link alone. The discussion is extended to another case of practical importance, where such a cavity is connected to an outer hole by a flange, and it is found that if the capacitance of the flange is large, the tunneling behavior is largely independent of the presence of the outer hole, apart from the effects of any dc bias.

Keywords

Magnetic Material Flange Mode Structure Practical Importance Weak Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Grabert, inSQUID ‘85’, H.-D. Hahlbohm and H. Lübbig, eds. (de Gruyter, Berlin, 1985); A. J. Leggett, inDirectons in Condensed Matter Physics, G. Grinstein and G. Mazenko, eds. (World Scientific, Singapore, 1986).Google Scholar
  2. 2.
    A. O. Caldeira and A. J. Leggett,Ann. Phys. (NY)149, 374 (1983).Google Scholar
  3. 3.
    R. de Bruyn Ouboter and D. Bol,Physica 112B, 15 (1982).Google Scholar
  4. 4.
    R. J. Prance, J. E. Mutton, H. Prance, T. D. Clark, A. Widom, and G. Megaloudis,Helv. Phys. Acta 56, 789 (1983); I. M. Dmitrenko, G. M. Tsoi, and V. I. Shnyrkov,Sov. J. Low Temp. Phys. 10, 111 (1984).Google Scholar
  5. 5.
    A. J. Leggett,Phys. Rev. B 30, 1208 (1984).Google Scholar
  6. 6.
    S. Chakravarty and A. Schmid,Phys. Rev. B 33, 2000 (1986).Google Scholar
  7. 7.
    D. E. McCumber,J. Appl. Phys. 39, 297 (1967).Google Scholar
  8. 8.
    T. Banks, C. M. Bender, and T. T. Wu,Phys. Rev. D 10, 3346 (1973).Google Scholar
  9. 9.
    J. P. Sethna,Phys. Rev. B 25, 5050 (1982).Google Scholar
  10. 10.
    A. Schmid,Ann. Phys. (NY), to be published.Google Scholar
  11. 11.
    H. Goldstein,Classical Mechanics (Addison-Wesley, 1950).Google Scholar
  12. 12.
    L.-D. Chang and S. Chakravarty,Phys. Rev. B 29, 130 (1984).Google Scholar
  13. 13.
    D. B. Schwartz, B. Sen, C. N. Archie, and J. E. Lukens,Phys. Rev. Lett. 55, 1547 (1985).Google Scholar
  14. 14.
    S. Washburn, R. A. Webb, R. F. Voss, and S. M. Faris,Phys. Rev. Lett. 54, 2712 (1985).Google Scholar
  15. 15.
    M. H. Devoret, J. M. Martinis, and J. Clarke,Phys. Rev. Lett. 55, 1908 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • A. I. M. Rae
    • 1
  • C. E. Gough
    • 1
  1. 1.Department of PhysicsUniversity of BirminghamBirminghamEngland

Personalised recommendations