Skip to main content
Log in

Thermal transport properties of helium near the superfluid transition. II. Dilute3He-4He mixtures in the superfluid phase

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Measurements of the average thermal conductivity κexphQ/ΔT and of the thermal relaxation time τ to reach steady-state equilibrium conditions are reported in the superfluid phase for dilute mixtures of3He in4He. Hereh is the cell height,Q is the heat flux, andΔT is the temperature difference across the fluid layer. The measurements were made over the impurity range 2×10−9<X(3He)<3×10−2 and with heat fluxes 0.3<Q<160 µW/cm2. Assuming the boundary resistanceR b , measured forX<10−5, to be independent ofX over the whole range ofX, a calculation is given for κexp. ForQ smaller than a well-defined critical heat fluxQ c (X) ∝X 0.9, κexp is independent of Q and can be identified with the local conductivity κeff, which is found to be independent of the reduced temperature ɛ = (T−Tλ)/Tλ for −ɛ≤10−2. Its extrapolated value at Tλ is found to depart forX≲10−3 from the prediction κλX −1, tending instead to a weaker divergence κλX −a witha≈0.08. A finite conductivity asX tends to zero is not excluded by the data, however. ForQ >Q c (X), a nonlinear regime is entered. ForX≲10−6, the measurements with the available temperature resolution are limited to the nonlinear conditions, but can be extrapolated into the linear regime forX≳2×10−7. The results for κexp(Q),Q c (X), and κeff(XX) are found to be internally consistent, as shown by comparison with a theory by Behringer based on Khalatnikov's transport equations. Furthermore, the observed relaxation times τ(X) in the linear regime are found to be consistent forX>10−5 with the hydrodynamic calculations using the measured κeff(X). ForX<10−5, a faster relaxation mechanism than predicted seems to dominate. The transport properties in the nonlinear regimes are presented and unexplained observations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Siggia,Phys. Rev. B 15, 2830 (1977).

    Google Scholar 

  2. M. Tanaka, A. Ikushima, and K. Kawasaki,Phys. Lett. 61A, 119 (1977).

    Google Scholar 

  3. M. Tanaka and A. Ikushima,J. Low Temp. Phys. 35, 9 (1979).

    Google Scholar 

  4. D. Gestrich, R. Walsworth, and H. Meyer,J. Low Temp. Phys. 54, 37 (1984).

    Google Scholar 

  5. D. Gestrich, M. Dingus, and H. Meyer,Phys. Lett. 99A, 331 (1983).

    Google Scholar 

  6. A. Onuki,J. Low Temp. Phys. 53, 189 (1983).

    Google Scholar 

  7. V. Dohm and R. Folk,Phys. Rev. B 28, 1332 (1983).

    Google Scholar 

  8. R. Folk and H. Iro,Phys. Lett. 109A, 53 (1985).

    Google Scholar 

  9. R. P. Behringer and H. Meyer,J. Low Temp. Phys. 46, 435 (1982).

    Google Scholar 

  10. I. M. Khalatnikov,Introduction to the Theory of Superfluidity (Benjamin, New York, 1965).

    Google Scholar 

  11. R. P. Behringer,J. Low Temp. Phys. 62, 15 (1986).

    Google Scholar 

  12. M. Dingus, F. Zhong, and H. Meyer,Phys. Rev. Lett. 54, 2347 (1985), Erratum.

    Google Scholar 

  13. A. Singsaas and G. Ahlers,Phys. Rev. B 29, 4951 (1984).

    Google Scholar 

  14. T. P. Ptukha,Zh. Eksp. Teor. Fiz. 40, 1583 (1961) [Sov. Phys. JETP 13, 1112, 1961].

    Google Scholar 

  15. I. M. Khalatnikov and V. N. Zharkov,Zh. Eksp. Teor. Fiz. 32, 1108 (1957) [Sov. Phys. JETP 5, 905, 1957].

    Google Scholar 

  16. E. Siggia and D. R. Nelson,Phys. Rev. B 15, 1427 (1977).

    Google Scholar 

  17. M. Dingus, F. Zhong, and H. Meyer,J. low Temp. Phys.,65, 185 (1986).

    Google Scholar 

  18. M. G. Ryschkewitsch and H. Meyer,J. Low Temp. Phys. 35, 103 (1979).

    Google Scholar 

  19. T. R. Roberts and S. G. Sydoriak,Phys. Fluids 3, 895 (1960).

    Google Scholar 

  20. G. Ahlers,Phys. Rev. A 3, 696 (1971).

    Google Scholar 

  21. F. M. Gasparini and M. R. Moldover,Phys. Rev. B 12, 93 (1975).

    Google Scholar 

  22. G. Ahlers and F. Pobell,Phys. Rev. Lett. 32, 144 (1974).

    Google Scholar 

  23. G. Ahlers, inThe Physics of Liquid and Solid Helium, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1976).

    Google Scholar 

  24. T. C. P. Chui and J. Lipa, to be published.

  25. R. Duncan and G. Ahlers, to be published.

  26. E. C. Kerr and D. Taylor,Ann. Phys. 26, 292 (1964).

    Google Scholar 

  27. F. Zhong, D. Gestrich, M. Dingus, and H. Meyer, to be published.

  28. R. P. Behringer and H. Meyer,J. Low Temp. Phys. 46, 435 (1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dingus, M., Zhong, F., Tuttle, J. et al. Thermal transport properties of helium near the superfluid transition. II. Dilute3He-4He mixtures in the superfluid phase. J Low Temp Phys 65, 213–245 (1986). https://doi.org/10.1007/BF00683974

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683974

Keywords

Navigation