Journal of Low Temperature Physics

, Volume 65, Issue 3–4, pp 185–212 | Cite as

Thermal transport properties in helium near the superfluid transition. I.4He in the normal phase

  • M. Dingus
  • F. Zhong
  • H. Meyer


The thermal conductivity κ and the associated relaxation time τ to reach steady-state conditions are reported for the normal phase of several very dilute mixtures of3He in4He (X<4 × 10−6) at saturated vapor pressure near Tλ. The measurements were made over the reduced temperature range 2.5 × 10−6<ɛ<2×10−1, where ɛ ≡ (T−Tλ)/Tλ, and are representative for pure4He. The spacing between the cell plates was 0.147 cm. The systematic uncertainty in the conductivity data is estimated to increase from ∼2% for ɛ=0.2 to ∼4% for ɛ=3 × 10−6. The random scatter due to finite temperature resolution increases to ∼7% at the smallest ɛ. The data are in agreement within the combined uncertainty with recent ones by Tam and Ahlers (cell F, spacing 0.20 cm) and with previous ones in this laboratory taken with a different plate spacing. The thermal diffusivity coefficientD T = κ / ϱC p obtained from τ is found to agree within better than 15% with the calculated one using data for κ, the density ϱ, and the specific heatC p . Measurements of the effective boundary resistivityR b in the superfluid phase are described.R b is found to depend on the thermal history of the cell when cycled up to 77 K and above. Also,R b shows the beginning of an anomalous increase for ¦ɛ¦≲10−4. The possible reasons for this anomaly are discussed, and their impact on the analysis of conductivity data in the normal phase is appraised.


Thermal Conductivity Vapor Pressure Thermal Diffusivity Systematic Uncertainty Saturated Vapor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Dingus, F. Zhong, and H. Meyer,Phys. Rev. Lett. 54, 2347 (1985).Google Scholar
  2. 2.
    V. Dohm and R. Folk,Phys. Rev. B 28, 1332 (1983).Google Scholar
  3. 3.
    D. Gestrich, M. Dingus, and H. Meyer,Phys. Lett. 99A, 331 (1983).Google Scholar
  4. 4.
    G. Ahlers, P. C. Hohenberg, and A. Kornblit,Phys. Rev. B 25, 3136 (1982).Google Scholar
  5. 5.
    W. Y. Tam and G. Ahlers,Phys. Rev. B 32, 5932 (1985).Google Scholar
  6. 6.
    V. Dohm and R. Folk, inFestkörperprobleme (Advances in Solid State Physics), P. Grosse, ed. (Vieweg, Braunschweig, 1982), Vol. XXII, p. 1, and references therein.Google Scholar
  7. 7.
    V. Dohm,Z. Phys. B 61, 193 (1985).Google Scholar
  8. 8.
    W. Y. Tam and G. Ahlers,Phys. Rev. B 33, 183 (1986).Google Scholar
  9. 9.
    E. C. Kerr and R. D. Taylor,Ann. Phys. 26, 292 (1964).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, 1979), Section 56, p 214Google Scholar
  11. 11.
    C. Pittman, L. Cohen, and H. Meyer,J. Low Temp. Phys. 46, 115 (1982).Google Scholar
  12. 12.
    V. J. Johnson, ed.,Properties of Materials at Low Temperatures (Phase 1) (Pergamon Press, 1961).Google Scholar
  13. 13.
    M. Dingus, F. Zhong, J. Tuttle, and H. Meyer,J. Low Temp. Phys.,65, 213 (1986).Google Scholar
  14. 14.
    R. Duncan and G. Ahlers, to be published.Google Scholar
  15. 15.
    J. M. Pfotenhauer and R. J. Donnelly,Adv. Heat Transfer 17, 65 (1985).Google Scholar
  16. 16.
    R. Duncan, G. Ahlers, and V. Steinberg,Bull. Am. Phys. Soc. 31, 281 (1986).Google Scholar
  17. 17.
    J. S. Langer and J. D. Reppy,Prog. Low Temp. Phys. 6, 30 (1970).Google Scholar
  18. 18.
    G. Ahlers,Phys. Rev. Lett. 22, 54 (1969).Google Scholar
  19. 19.
    R. P. Behringer,J. Low Temp. Phys. 62, 15 (1986).Google Scholar
  20. 20.
    W. S. Corak, M. P. Garfunkel, C. B. Satterthwaite, and A. Wexler,Phys. Rev. 98, 1699 (1955).Google Scholar
  21. 21.
    G. Ahlers,Phys. Rev. A 3, 696 (1971).Google Scholar
  22. 22.
    R. W. Hill and O. V. Lounasmaa,Phil. Mag. 2, 143 (1957).Google Scholar
  23. 23.
    E. G. White,Experimental Methods in Low Temperature Physics (Oxford University Press, 1953).Google Scholar
  24. 24.
    J. Kerrisk and W. Keller,Phys. Rev. 177, 341 (1969); J. Kerrisk, Ph.D. thesis, University of New Mexico (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • M. Dingus
    • 1
  • F. Zhong
    • 1
  • H. Meyer
    • 1
  1. 1.Department of PhysicsDuke UniversityDurham

Personalised recommendations