Skip to main content
Log in

Fluctuation conductivity in a superconducting proximity sandwich

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The fluctuation conductivity above the transition temperatureT c is calculated in a superconducting proximity sandwich containing magnetic impurities. The calculations are carried out in the framework of the Kaiser-Zuckermann theory based on the McMillan tunneling model, under the condition τS,N T c≪1, where τS,N are the lifetimes of electrons associated with the tunneling process. The role of the proximity effect is to suppress the fluctuation conductivity by renormalizing the coefficients of the Aslamazov-Larkin and Maki-Thompson terms, and the third term. On the other hand, magnetic impurities affect mostly the Maki-Thompson contribution via the pair-breaking parameter, which is derived as a quantity depending on τS,N, the spin-flip lifetime, and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. G. Aslamazov and A. I. Larkin,Fiz. Tverd. Tela. 10, 1104 (1968) [Sov. Phys.—Solid State 10, 875 (1968)].

    Google Scholar 

  2. K. Maki,Progr. Theor. Phys. 39, 897 (1968);40, 193 (1968).

    Google Scholar 

  3. R. S. Thompson,Phys. Rev. B 1, 327 (1970).

    Google Scholar 

  4. J. Keller and V. Korenman,Phys. Rev. Lett. 27, 1270 (1971);Phys. Rev. B 5, 4367 (1972).

    Google Scholar 

  5. B. R. Patton,Phys. Rev. Lett. 27, 1273 (1971).

    Google Scholar 

  6. K. Kajimura and N. Mikoshiba,J. Low Temp. Phys. 4, 331 (1971).

    Google Scholar 

  7. K. Okamoto,J. Phys. Soc. Japan 42, 1136 (1977).

    Google Scholar 

  8. O. Entin-Wohlman and R. Orbach, inProc. 14th Int. Conf. Low Temp. Phys., M. Krusius and M. Vuorio, eds. (North-Holland, Amsterdam, 1975), Vol. 2, p. 391.

    Google Scholar 

  9. O. Entin-Wohlman,Phys. Rev. B 14, 274 (1976).

    Google Scholar 

  10. P. G. de Gennes,Rev. Mod. Phys. 36, 225 (1964).

    Google Scholar 

  11. W. L. McMillan,Phys. Rev. 175, 537 (1968).

    Google Scholar 

  12. F. Aspen and A. M. Goldman,Phys. Rev. B 22, 3508 (1980).

    Google Scholar 

  13. A. B. Kaiser and M. J. Zuckermann,Phys. Rev. B 1, 229 (1970).

    Google Scholar 

  14. A. A. Abrikosov and L. P. Gor'kov,Zh. Eksp. Teor. Fiz. 39, 1781 (1960) [Sov. Phys.—JETP 12, 1243 (1961)].

    Google Scholar 

  15. G. Deutscher and O. Entin-Wohlman,Phys. Rev. B 14, 1002 (1976).

    Google Scholar 

  16. W. Haberkorn and J. Richter,J. Low Temp. Phys. 35, 627 (1979).

    Google Scholar 

  17. E. D. Ramos,Solid State Commun. 15, 1161 (1974).

    Google Scholar 

  18. E. L. Wolf, inSolid State Physics, H. Ehrenreich, F. Seitz, and D. Turnbull, eds. (Academic Press, New York, 1975), Vol. 30, p. 2.

    Google Scholar 

  19. N. Mori,J. Low Temp. Phys. 40, 275 (1980).

    Google Scholar 

  20. C. Caroli and K. Maki,Phys. Rev. 159, 306 (1967).

    Google Scholar 

  21. C. Van Haesendonck, L. Van der Dries, Y. Bruynseraede, and A. Gilabert,Solid State Commun. 35, 805 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Financial support provided by the Post-Doctoral Fellowship Commission in Science and Engineering Research Laboratory, Waseda University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, N. Fluctuation conductivity in a superconducting proximity sandwich. J Low Temp Phys 46, 543–553 (1982). https://doi.org/10.1007/BF00683916

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683916

Keywords

Navigation