Skip to main content
Log in

Diffusive relaxation processes in liquid3He-4He mixtures. I. Normal phase

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

When a heat flux is switched on across a fluid binary mixture, steady state conditions for the temperature and mass concentration gradients ∇T and ∇c are reached via a diffusive transient process described by a series of terms “modes” involving characteristic times τ n . These are determined by static and transport properties of the mixture, and by the boundary conditions. We present a complete mathematical solution for the relaxation process in a binary normal liquid layer of heightd and infinite diameter, and discuss in particular the role of the parameterA=k 2 T (∂μ/∂c) T,P /TC P,c coupling the mass and thermal diffusion. Herek T is the thermal diffusion ratio, (∂μ/∂c) −1 T,P is the concentration susceptibility, μ is the chemical potential difference between the components, andC P,c is the specific heat. We present examples of special situations found in relaxation experiments. WhenA is small, the observable times τ(∇T) and τ(∇c) for temperature and concentration equilibration are different, but they tend to the same value asA increases. We present experimental results on four examples of liquid helium of different3He mole fractionX, and discuss these results on the basis of the preceding analysis. In the simple case for pure3He (i.e., in the absence of mass diffusion) we find the observed τ(∇T) to be in good agreement with that calculated from the thermal diffusivity. For all the investigated3He-4He mixtures, we observe τ(∇c) and τ(∇T) to be different whenA is small, a situation occurring at high enough temperatures. AsA increases with decreasingT, they become equal, as predicted. For the mixtures with mole fractionsX(3He)=0.510 and 0.603, we derive the mass diffusionD from the analysis of τ(∇c) and demonstrate that it diverges strongly with an exponent of about 1/3 in the critical region near the superfluid transition. As the tricritical point (T t,X t) is approached for the mixtureX=X t0.675,D tends to zero with an exponent of roughly 0.4. These results are consistent with predictions and also with theD derived from sound attenuation data. We discuss the difficulties of the analysis in the regime close toT λ andT t, with special emphasis on the situation created by the onset of a superfluid film along the wall of the cell forX=0.603 and 0.675.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and I. M. Lifshitz,Fluid Mechanics (Pergamon Press, London, 1959), Chapter VI.

    Google Scholar 

  2. H. L. Swinney and D. L. Henry,Phys. Rev. A 8, 2586 (1973); J. V. Sengers and J. M. H. Levelt-Sengers, inProgress in Liquid Physics, C. A. Croxton, ed. (Wiley, Chichester, U.K., 1978), p. 103.

    Google Scholar 

  3. G. Ahlers and F. Pobell,Phys. Rev. Lett. 32, 144 (1974).

    Google Scholar 

  4. R. P. Behringer and G. Ahlers,Phys. Lett. 62A, 329 (1977).

    Google Scholar 

  5. G. Ruppeiner and H. Meyer,Phys. Lett. 70A, 433 (1979); G. Ruppeiner, M. Ryschkewitsch, and H. Meyer,J. Low Temp. Phys. 41, 179 (1980).

    Google Scholar 

  6. M. Tanaka and A. Ikushima,J. Low Temp. Phys. 35, 9 (1979); A. Ikushima,Japan. J. Appl. Phys. 19, 2315 (1980).

    Google Scholar 

  7. G. Ahlers,Phys. Rev. Lett. 24, 1333 (1970).

    Google Scholar 

  8. R. P. Behringer and H. Meyer,J. Low Temp. Phys., this issue, next article.

  9. I. M. Khalatnikov,Introduction to the Theory of Superfluidity (Benjamin, New York, 1965), Section 24.

    Google Scholar 

  10. A. Griffin,Can. J. Phys. 47, 429 (1969).

    Google Scholar 

  11. G. Ahlers, inThe Physics of Liquid and Solid Helium, Part I, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1976).

    Google Scholar 

  12. G. Goellner, R. P. Behringer, and H. Meyer,J. Low Temp. Phys. 13, 113 (1973).

    Google Scholar 

  13. R. B. Griffiths,Phys. Rev. Lett. 24, 715 (1970); E. K. Riedel,Phys. Rev. Lett. 28, 675 (1972).

    Google Scholar 

  14. E. K. Riedel, H. Meyer, and R. P. Behringer,J. Low Temp. Phys. 22, 369 (1976).

    Google Scholar 

  15. E. D. Siggia and D. R. Nelson,Phys. Rev. B 15, 1427 (1977).

    Google Scholar 

  16. F. M. Gasparini and M. R. Moldover,Phys. Rev. B 12, 93 (1975).

    Google Scholar 

  17. T. Takada and T. Watanabe,J. Low Temp. Phys. 41, (1980).

  18. F. M. Gasparini and A. A. Gaeta,Phys. Rev. B 17, 1466 (1978).

    Google Scholar 

  19. T. A. Alvesalo, P. M. Berglund, S. T. Islander, G. R. Pickett, and W. Zimmermann, Jr.,Phys. Rev. A 4, 2354 (1971).

    Google Scholar 

  20. S. T. Islander and W. Zimmermann, Jr.,Phys. Rev. A 7, 188 (1973).

    Google Scholar 

  21. M. G. Ryschkewitsch and H. Meyer,J. Low Temp. Phys. 35, 103 (1979).

    Google Scholar 

  22. C. A. Gearhart and W. Zimmerman, Jr.,Phys. Rev. B 19, 2677 (1979).

    Google Scholar 

  23. P. Leiderer, D. R. Watts, and W. W. Webb,Phys. Rev. Lett. 33, 483 (1974).

    Google Scholar 

  24. H. A. Kierstead,J. Low Temp. Phys. 35, 25 (1979).

    Google Scholar 

  25. M. K. Grover and J. Swift,J. Low Temp. Phys. 11, 751 (1973).

    Google Scholar 

  26. K. Kawasaki and J. D. Gunton,Phys. Rev. Lett. 29, 1661 (1972).

    Google Scholar 

  27. D. B. Roe, G. Ruppeiner, and H. Meyer,J. Low Temp. Phys. 27, 747 (1977).

    Google Scholar 

  28. S. G. Lipson, J. Landau, and N. Bochner, inProc. International Conference on Low Temperature Physics LT15 (Grenoble, 1978).

  29. J. F. Kerrisk and W. E. Keller,Phys. Rev. 177, 341 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by grants from the National Science Foundation and the Research Corporation and by an A. P. Sloan fellowship to one of the authors (RPB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behringer, R.P., Meyer, H. Diffusive relaxation processes in liquid3He-4He mixtures. I. Normal phase. J Low Temp Phys 46, 407–434 (1982). https://doi.org/10.1007/BF00683908

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683908

Keywords

Navigation