Skip to main content
Log in

Zero-temperature attenuation and transverse spin dynamics in Fermi liquids. I. Generalized Landau theory

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This is the first in a series of papers on a consistent microscopic theory of transverse dynamics in spin-polarized or binary Fermi liquids. We start from exact microscopic equations in Green's functions at zero temperatures and consider slightly inhomogeneous perturbations. The transverse dynamics is described by an integral equation in a 4D momentum space with inevitable spatial and temporal non-localities. This equation can be reduced only to a set of two coupled equations for partial transverse densities corresponding to independent contributions to a transverse magnetic moment from transverse components of slightly tilted up and down spins. It is shown that, in contrast to previous phenomenological theories of polarized Fermi liquids, these equations reduce to a single Landau-like kinetic equation only in cases of low polarization or density. This implies the existence of two different sorts of (attenuating) transverse quasi-particles. The molecular field (an analog of a Landau function) has a form of a 4-component non-local operator. This interaction operator is expressed via the off-diagonal component of the exact irreducible vertex with the help of some integral equation, and cannot be given, as it is usually assumed, as any limit of the full vertex. The proper Landau-like phenomenological approach corresponding to our exact microscopic equations, should operate with two types of attenuating transverse quasi-particles each oscillating between its Fermi surface and some other 3D surface in a 4D momentum space. The dephasing of inhomogeneous precession between two different types of dressed transverse quasi-particles leads to an inhomogeneous broadening which manifests itself as a peculiar zero-temperature relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Meyerovich, inHelium Three, W. P. Halperin and L. P. Pitaevskii, eds. (North-Holland, Amsterdam, 1990), pp. 757–879.

    Google Scholar 

  2. A. E. Meyerovich,J. Low Temp. Phys. 53, 487 (1983).

    Google Scholar 

  3. A. J. Leggett,J. Phys. C3, 448 (1970)

    Google Scholar 

  4. V. P. Silin,Sov. Phys.-JETP 6, 945 (1957).

    Google Scholar 

  5. L. D. Landau,Sov. Phys.-JETP 3, 920 (1956);5, 101 (1957);8, 70 (1958).

    Google Scholar 

  6. A. E. Meyerovich,Physica B169, 183 (1991).

    Google Scholar 

  7. A. E. Meyerovich,Phys. Lett. A107, 177 (1985).

    Google Scholar 

  8. J. W. Jeon, and W. J. Mullin,Phys. Rev. Lett. 62, 2691 (1989);Spin Diffusion in Dilute, Polarized 3 He- 4 He Solutions, Preprint, 1992

    Google Scholar 

  9. E. P. Bashkin,Phys. Rev. Lett. 55, 1426 (1985).

    Google Scholar 

  10. F. Laloe, private communications (1986); E. P. Bashkin,Sov. Phys.-JETP 66, 482 (1987).

  11. I. A. Akhiezer and E. M. Chudnovskii,Sov. Phys.-JETP 66, 2203 (1974).

    Google Scholar 

  12. J. Oliva and N. W. Ashcroft,Phys. Rev. B23, 6399, (1981);B25, 223 (1982).

    Google Scholar 

  13. E. P. Bashkin and A. E. Meyerovich,Adv. Phys. 30, 1 (1981).

    Google Scholar 

  14. S. M. Troian and N. D. Mermin,J. Low Temp. Phys. 59, 115 (1985).

    Google Scholar 

  15. R. H. Anderson, C. J. Pethick, and K. F. Quader,Phys. Rev. B37, 1620 (1987).

    Google Scholar 

  16. K. F. Quader and K. S. Bedell,J. Low Temp. Phys. 58, 89 (1985); C. R. Sanchez-Castro, K. S. Bedell, and S. A. J. Weigers,Phys. Rev. B40, 437 (1989); C. Sanchez-Castro and K. S. Bedell,Phys. Rev. B43, 12874 (1991).

    Google Scholar 

  17. K. D. Ivanova and A. E. Meyerovich,J. Low Temp. Phys. 72, 461 (1988).

    Google Scholar 

  18. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,Methods of Quantum Field Theory in Statistical Physics (Dover, NY 1975).

    Google Scholar 

  19. P. Kondratenko,Sov. Phys.-JETP 20, 1032 (1965);23, 509 (1966).

    Google Scholar 

  20. A. A. Abrikosov and I. E. Dzyaloshinskii,Sov. Phys.-JETP 8, 535 (1958).

    Google Scholar 

  21. C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein,Phys. Rev. Lett. 63, 1996 (1989).

    Google Scholar 

  22. E. M. Lifshitz and L. P. Pitaevskii,Statistical Physics, Part 2 [Landau and Lifshitz,Theoretical Physics, v. IX] (Pergamon, NY, 1980).

    Google Scholar 

  23. A. E. Meyerovich,Phys. Rev. B39, 9318 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyerovich, A.E., Musaelian, K.A. Zero-temperature attenuation and transverse spin dynamics in Fermi liquids. I. Generalized Landau theory. J Low Temp Phys 89, 781–822 (1992). https://doi.org/10.1007/BF00683887

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683887

Keywords

Navigation