Theory of the Bloch-wave oscillations in small Josephson junctions

Abstract

A quantum-statistical theory of the low-temperature behavior of Josephson junctions with very small capacitanceC and quasiparticle conductivityG, driven by a small currentI(t), is developed. In such junctions the “secondary” quantum macroscopic effects (tunneling and interference) are significant for all values of the Josephson phase difference ϕ, so that new features in the junction dynamics arise, including quantum “Bloch-wave” oscillations. Here the junction dynamics is analyzed in detail starting from a simple macroscopic Hamiltonian. The simplest way to analyze the Bloch-wave oscillations turns out to be a Langevin-type equation for the operator of the junction “quasicharge”q. In particular, this equation shows that the frequencyf B of these oscillations is related by the fundamental equation\(f_B = (\bar I - G\bar V)/2e\) to the dc current\(\bar I\) and voltage\(\bar V\). The main effects suppressing or masking the Bloch-wave oscillations can be analyzed using the equation for the density matrix of the system traced over the states of the quasiparticles. This analysis has made it possible to establish the main conditions for the experimental observation of the predicted effects and to present a general picture of the low temperature dynamics of Josephson junctions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. W. Anderson, inLectures on the Many-Body Problem, E. R. Caianiello, ed. (Academic Press, New York, 1964), Vol. 2, p. 113.

    Google Scholar 

  2. 2.

    K. K. Likharev,Usp. Fiz. Nauk 139, 169 (1983) [Sov. Phys. Usp. 26, 87 (1983)].

    Google Scholar 

  3. 3.

    A. I. Larkin, K. K. Likharev, and Yu. N. Ovchinnikov, inProceedings of the 17th International Conference on Low Temperature Physics, Phys. B + C 126, 414 (1984).

    Google Scholar 

  4. 4.

    K. K. Likharev,Dynamics of Josephson Junctions and Circuits (Gordon and Breach, New York) to be published.

  5. 5.

    V. A. Slusarev and I. A. Burakhovich,Phys. Stat. Sol. (b) 54, K103 (1972).

    Google Scholar 

  6. 6.

    B. Abeles,Phys. Rev. B 15, 2828 (1977).

    Google Scholar 

  7. 7.

    E. Šimanek,Phys. Rev. B 22, 459 (1979);Phys. Rev. Lett. 45, 1442 (1980);Solid State Commun. 48, 1023 (1983).

    Google Scholar 

  8. 8.

    K. B. Efetov,Zh. Eksp. Teor. Fiz. 78, 2017 (1980) [Sov. Phys. JETP 51, 1015 (1980)].

    Google Scholar 

  9. 9.

    S. Doniach,Phys. Rev. B 24, 5063 (1981).

    Google Scholar 

  10. 10.

    A. Widom, T. D. Clark, and G. Megaloudis,Phys. Lett. A 76, 163 (1980).

    Google Scholar 

  11. 11.

    A. Widom, G. Megaloudis, J. E. Sacco, and T. D. Clark,Nuovo Cimento B 61, 112 (1981).

    Google Scholar 

  12. 12.

    D. Rogovin and J. Nagel,Phys. Rev. B 26, 3698 (1982).

    Google Scholar 

  13. 13.

    A. Widom, G. Megaloudis, T. D. Clark, H. Prance, and R. J. Prance,J. Phys. A 15, 3877 (1982).

    Google Scholar 

  14. 14.

    E. U. Condon,Phys. Rev. 31, 891 (1928).

    Google Scholar 

  15. 15.

    J. Ziman,Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972), Chapters 3 and 6.

    Google Scholar 

  16. 16.

    E. M. Lifshitz and L. P. Pitaevskii,Statistical Physics, Part 2 (Nauka, Moscow, 1978), Chapter 6.

    Google Scholar 

  17. 17.

    A. J. Leggett,Prog. Theor. Phys. Suppl. 69, 70 (1980).

    Google Scholar 

  18. 18.

    I. R. Senitsky,Phys. Rev. 119, 670 (1960);124, 642 (1961).

    Google Scholar 

  19. 19.

    M. Lax,Phys. Rev. 145, 110 (1966).

    Google Scholar 

  20. 20.

    H. B. Callen and T. E. Welton,Phys. Rev. 83, 34 (1951).

    Google Scholar 

  21. 21.

    R. Kubo,J. Phys. Soc. Japan 12, 570 (1957).

    Google Scholar 

  22. 22.

    D. V. Averin, A. B. Zorin, and K. K. Likharev,Zh. Eksp. Teor. Fiz. 88, 697 (1985).

    Google Scholar 

  23. 23.

    R. J. Prance, J. E. Mutton, H. Prance, T. D. Clark, A. Widom, and G. Megaloudis,Helv. Phys. Acta 56, 789 (1983); A. Widomet al., J. Low Temp. Phys. 57, 651 (1984).

    Google Scholar 

  24. 24.

    A. Schmid,Phys. Rev. Lett. 51, 1506 (1983).

    Google Scholar 

  25. 25.

    H. M. James,Phys. Rev. 76, 1611 (1949).

    Google Scholar 

  26. 26.

    G. H. Wannier,Phys. Rev. 117, 432 (1960).

    Google Scholar 

  27. 27.

    V. A. Yakovlev,Fiz. Tverd. Tela 3, 1983 (1961).

    Google Scholar 

  28. 28.

    L. V. Keldysh,Zh. Eksp. Teor. Fiz. 43, 661 (1962).

    Google Scholar 

  29. 29.

    L. Esaki and R. Tsu,IBM J. Res. Dev. 14, 61 (1970).

    Google Scholar 

  30. 30.

    P. A. Lebwohl and R. Tsu,J. Appl. Phys. 41, 2664 (1970).

    Google Scholar 

  31. 31.

    S. A. Ktitorov, G. S. Simin, and V. Ya. Sindalovskiy,Fiz. Tverd. Tela 13, 2230 (1971).

    Google Scholar 

  32. 32.

    F. G. Bass and E. A. Rubinshtein,Fiz. Tverd. Tela 19, 1379 (1977).

    Google Scholar 

  33. 33.

    E. M. Epshtein,Fiz. Tverd. Tela 21, 1719 (1979).

    Google Scholar 

  34. 34.

    V. S. Valilov, B. V. Stepanchinskiy, and V. Sh. Chanbarisov,Fiz. Tverd. Tela 8, 2660 (1966).

    Google Scholar 

  35. 35.

    S. Maekawa,Phys. Rev. Lett. 24, 1175 (1970).

    Google Scholar 

  36. 36.

    R. W. Koss and L. M. Lambert,Phys. Rev. B 5, 1479 (1972).

    Google Scholar 

  37. 37.

    D. May and A. Vecht,J. Phys. C 8, L505 (1975).

  38. 38.

    L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke,J. Vac. Sci. Technol. 10, 655 (1973).

    Google Scholar 

  39. 39.

    L. Esaki and L. L. Chang,Phys. Rev. Lett. 33, 495 (1974).

    Google Scholar 

  40. 40.

    R. B. Laughlin,Phys. Rev. B 23, 5632 (1981).

    Google Scholar 

  41. 41.

    B. I. Halperin,Phys. Rev. B 25, 2185 (1982).

    Google Scholar 

  42. 42.

    A. Widom, G. Megaloudis, T. D. Clark, and R. J. Prance,J. Phys. A 15, 1561 (1982).

    Google Scholar 

  43. 43.

    M. Büttiker, Y. Imry, and R. Landauer,Phys. Lett. 96A, 365 (1983).

    Google Scholar 

  44. 44.

    P. E. Lindelof and O. P. Hansen,J. Phys. C 16, L1185 (1983).

  45. 45.

    M. Sugaharaet al., J. Phys. Soc. Jap. 53, 3146 (1984).

    Google Scholar 

  46. 46.

    K. K. Likharev and A. B. Zorin, inProceedings of the 17th International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), Vol. 2, p. 1153.

    Google Scholar 

  47. 47.

    K. K. Likharev and A. B. Zorin, Report LE27, 1984 Applied Superconductivity Conference;IEEE Trans. Magn., to be published.

  48. 48.

    P. Monceau, J. Richard, and M. Renard,Phys. Rev. Lett. 45, 43 (1980).

    Google Scholar 

  49. 49.

    A. Zettl and G. Grüner,Phys. Rev. B 26, 755 (1984).

    Google Scholar 

  50. 50.

    K. K. Likharev and V. K. Semenov,Pis'ma Zh. Eksp. Teor. Fiz. 15, 625 (1972) [JETP Lett. 15, 442 (1972)].

    Google Scholar 

  51. 51.

    R. L. Stratonovich,Selected Topics in the Theory of Random Noise (Gordon and Breach, New York, 1967).

    Google Scholar 

  52. 52.

    L. D. Jackel, E. L. Hu, R. E. Howard, L. A. Fetter, and D. M. Tennant,IEEE Trans. Magn. 17, 295 (1981).

    Google Scholar 

  53. 53.

    R. F. Voss and R. A. Webb,Phys. Rev. Lett. 47, 265 (1981).

    Google Scholar 

  54. 54.

    K. K. Likharev,Rev. Mod. Phys. 51, 101 (1979).

    Google Scholar 

  55. 55.

    R. E. Harriset al., private communication (August 1984).

  56. 56.

    K. K. Likharev and A. B. Zorin, to be published.

  57. 57.

    K. K. Likharev and A. B. Zorin, A Possible Standard of Current Based on Secondary Quantum Macroscopic Effects in Weak Superconductivity, Preprint 7/1984, Department of Physics, Moscow State University (January 1984).

  58. 58.

    J. C. Gallop and W. J. Radcliffe, A Superconducting Quantum Current Standard, Preprint QU 67, National Physical Laboratory, Teddington, England (June 1984).

    Google Scholar 

  59. 59.

    E. R. Cohen and B. N. Taylor,J. Phys. Chem. Ref. Data 2, 663 (1973).

    Google Scholar 

  60. 60.

    V. S. Tuninskiy,Metrologia (USSR)1978 (1), 13.

  61. 61.

    M. M. Nieto,Phys. Rev. A 29, 3413 (1984).

    Google Scholar 

  62. 62.

    T. R. Gheewala,IEEE Trans. Electron. Dev. 27, 1857 (1980).

    Google Scholar 

  63. 63.

    K. K. Likharev and V. V. Migulin,Radiotekhn. Elektron. 25, 1121 (1980).

    Google Scholar 

  64. 64.

    I. A. Devyatov, L. S. Kuzmin, K. K. Likharev, V. V. Migulin, and A. B. Zorin, Report, 9th International Conference on Infrared and Millimeter Waves, to be published.

  65. 65.

    S. A. Bulgadaev,Pis'ma Zh. Eksp. Teor. Fiz. 39, 264 (1984);Phys. Lett. 104A, 215 (1984).

    Google Scholar 

  66. 66.

    T.-L. Ho,Phys. Rev. Lett. 51, 2060 (1983).

    Google Scholar 

  67. 67.

    E. Ben-Jacob, E. Mottola, and G. Schön,Phys. Rev. Lett. 51, 2064 (1983).

    Google Scholar 

  68. 68.

    I. O. Kulik and R. I. Shekhter,Fiz. Nizk. Temp. 2, 21 (1976).

    Google Scholar 

  69. 69.

    M. N. Cohen, L. N. Falicov, and J. C. Phillips,Phys. Rev. Lett. 8, 316 (1962).

    Google Scholar 

  70. 70.

    M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1969), Chapter 20.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Likharev, K.K., Zorin, A.B. Theory of the Bloch-wave oscillations in small Josephson junctions. J Low Temp Phys 59, 347–382 (1985). https://doi.org/10.1007/BF00683782

Download citation

Keywords

  • Experimental Observation
  • Magnetic Material
  • Density Matrix
  • Phase Difference
  • Temperature Dynamic