Skip to main content
Log in

Physical properties of transition to chaos in RF-driven Josephson junction analog

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

An analog circuit is used to investigate the behavior of the transition to chaos in the rf-driven Josephson junction under the variation of excitation amplitude ρ and frequency Ω with McCumber parameter β>1. A series of transitions is observed, including a hysteretic jump, symmetry breaking, period doubling, and intermittency prior to chaos, and the transition boundaries are given in a state diagram in the ρ vs. Ω parameter space. Thus, the sequence of transitions to chaos can be inferred from this diagram. Based on these results, the harmonic balance method and Floquet theory are applied to study the instability of the transition series. It is suggested that all these transitions to chaos can be explained as parametric excitations. In addition, the transition boundaries in the state diagram can be satisfactorily computed from the conditions with a Floquet multiplier μ=±1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Eckmann,Rev. Mod. Phys. 53, 643 (1981).

    Google Scholar 

  2. E. Ott,Rev. Mod. Phys. 53, 655 (1981).

    Google Scholar 

  3. B. A. Huberman, J. P. Crutchfield, and N. H. Packard,Appl. Phys. Lett. 37, 750 (1980).

    Google Scholar 

  4. W. C. Stewart,Appl. Phys. Lett. 12, 277 (1968).

    Google Scholar 

  5. D. E. McCumber,J. Appl. Phys. 39, 3113 (1968).

    Google Scholar 

  6. N. F. Pedersen and A. Davidson,Appl. Phys. Lett. 39, 830 (1981).

    Google Scholar 

  7. W. H. Steeb and A. Kunick,Phys. Rev. A 25, 2889 (1982); W. H. Steep, W. Erig, and A. Kunick,Phys. Lett. 93A, 267 (1983).

    Google Scholar 

  8. R. L. Kautz,J. Appl. Phys. 52, 3528, 6241 (1981);57, 875 (1985).

    Google Scholar 

  9. E. Ben-Jacob, Y. Braiman, R. Shainsky, and Y. Imry,Appl. Phys. Lett. 38, 822 (1981).

    Google Scholar 

  10. D. D'Humieres, M. R. Beasley, B. A. Huberman, and A. Libchaber,Phys. Rev. A 26, 3483 (1982).

    Google Scholar 

  11. M. Cirillo and N. F. Pedersen,Phys. Lett. 90A, 150 (1982).

    Google Scholar 

  12. W. J. Yeh and Y. H. Kao,Phys. Rev. Lett. 49, 1888 (1982).

    Google Scholar 

  13. W. J. Yeh and Y. H. Kao,Appl. Phys. Lett. 42, 299 (1983).

    Google Scholar 

  14. H. Seifert,Phys. Lett. 98A, 213 (1983).

    Google Scholar 

  15. A. H. MacDonald and M. Plischke,Phys. Rev. B 27, 201 (1983).

    Google Scholar 

  16. M. Octavio,Phys. Rev. B 29, 1231 (1984).

    Google Scholar 

  17. K. Okuyama, H. J. Hartfuss, and K. H. Gundlach,J. Low Temp. Phys. 44, 283 (1981).

    Google Scholar 

  18. R. F. Miracky, J. Clarke, and R. H. Koch,Phys. Rev. Lett. 50, 856 (1983).

    Google Scholar 

  19. M. Octavio and C. R. Nasser,Phys. Rev. B 30, 1586 (1984).

    Google Scholar 

  20. D. C. Cronemyer, C. C. Chi, A. Davidson, and N. F. Pedersen,Phys. Rev. B 31, 2667 (1985).

    Google Scholar 

  21. M. T. Levinsen,J. Appl. Phys. 53, 4294 (1982).

    Google Scholar 

  22. S. Novak and R. G. Frehlich,Phys. Rev. A 26, 3660 (1982).

    Google Scholar 

  23. M. Odyniec and L. O. Chua,IEEE Trans. Circuits Syst. 30, 308 (1983);32, 34 (1985).

    Google Scholar 

  24. Z. D. Genchev, Z. G. Ivanov, and B. N. Todorov,IEEE Trans. Circuits Syst. 30, 633 (1983).

    Google Scholar 

  25. N. F. Pedersen, O. H. Soerensen, B. Dueholm, and J. Mygind,J. Low Temp. Phys. 38, 1 (1980).

    Google Scholar 

  26. K. Wiesenfeld, E. Knobloch, R. F. Miracky, and J. Clarke,Phys. Rev. A. 29, 2102 (1984).

    Google Scholar 

  27. J. H. Magerlein,Rev. Sci. Instrum. 49, 486 (1978).

    Google Scholar 

  28. E. Ben-Jacob, I. Goldhirsch, Y. Imry, and S. Fishman,Phys. Rev. Lett. 29, 1599 (1982);Phys. Rev. B 29, 1218 (1984).

    Google Scholar 

  29. M. T. Levinsen, R. Y. Chiao, M. J. Feldman, and B. A. Tucker,Appl. Phys. Lett. 31, 776 (1977).

    Google Scholar 

  30. P. Manneville and Y. Pomeau,Phys. Lett. 75A, 1 (1979);Commun. Math. Phys. 74, 189 (1980); J. E. Hirsch, B. A. Huberman, and D. J. Scalapino,Phys. Rev. A 25, 519 (1982).

    Google Scholar 

  31. B. A. Huberman and J. P. Crutchfield,Phys. Rev. Lett. 23, 1743 (1979).

    Google Scholar 

  32. D. W. Jordan and P. Smith,Nonlinear Ordinary Differential Equations (Oxford University Press, Oxford, 1977), Chapter 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, Y.H., Huang, J.C. & Gou, Y.S. Physical properties of transition to chaos in RF-driven Josephson junction analog. J Low Temp Phys 63, 287–305 (1986). https://doi.org/10.1007/BF00683769

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683769

Keywords

Navigation