Advertisement

Journal of Low Temperature Physics

, Volume 63, Issue 3–4, pp 215–233 | Cite as

Spin relaxation in normal liquid3He:T1 in the Fermi liquid (TTF) regime

  • Kevin S. Bedell
  • David E. Meltzer
Article

Abstract

The low-temperature (T≪TF) spin relaxation timeT1 in normal liquid3He is calculated. First an expression forT1 is obtained using the Landau kinetic equation, which is in terms of the perturbations of the scattering amplitudes due to nuclear dipole-dipole interactions. These perturbations are obtained using the induced interaction model, which explicitly includes the effects of many-body correlations arising from the Pauli principle. The results are in good agreement with experiment, as well as with previous calculations.

Keywords

Magnetic Material Kinetic Equation Interaction Model Previous Calculation Spin Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Nozières,Theory of Interacting Fermi Systems (Benjamin, New York, 1964).Google Scholar
  2. 2.
    K. S. Bedell and D. E. Meltzer,Phys. Lett. 106A, 312 (1984).Google Scholar
  3. 3.
    I. P. Ipatova and G. M. Eliashberg,Zh. Eksp. Teor. Fiz. 43, 1795 (1962) [Sov. Phys. JETP 16, 1269 (1963)].Google Scholar
  4. 4.
    S. Babu and G. E. Brown,Ann. Phys. 78, 1 (1973).Google Scholar
  5. 5.
    S. M. Havens-Sacco and A. Widom,Phys. Rev. B 25, 6696 (1982).Google Scholar
  6. 6.
    D. Vollhardt and P. Wölfle,Phys. Rev. Lett. 47, 190 (1981).Google Scholar
  7. 7.
    G. Baym and C. J. Pethick, inThe Physics of Liquid and Solid Helium, Part II, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1978), and references therein.Google Scholar
  8. 8.
    T. L. Ainsworth, K. S. Bedell, G. E. Brown, and K. F. Quader,J. Low Temp. Phys. 50, 317 (1983).Google Scholar
  9. 9.
    K. S. Bedell and T. L. Ainsworth,Phys. Lett. 102A, 49 (1984).Google Scholar
  10. 10.
    K. F. Quader and K. S. Bedell,J. Low Temp. Phys. 58, 89 (1985).Google Scholar
  11. 11.
    S.-O. Bäckman, G. E. Brown, and J. A. Niskanen,Phys. Rep. 124, 1 (1985).Google Scholar
  12. 12.
    O. Sjöberg,Ann. Phys. 78, 39 (1973).Google Scholar
  13. 13.
    G. E. Brown,Unified Theory of Nuclear Models and Forces (North-Holland, Amsterdam, 1971).Google Scholar
  14. 14.
    C. H. Aldrich III, C. J. Pethick, and D. Pines,Phys. Rev. Lett. 37, 845 (1976).Google Scholar
  15. 15.
    C. H. Aldrich III and D. Pines,J. Low Temp. Phys. 32, 689 (1978).Google Scholar
  16. 16.
    D. S. Greywall,Phys. Rev. B 27, 2747 (1983).Google Scholar
  17. 17.
    B. T. Beal and J. Hatton,Phys. Rev. A 139, 1751 (1965).Google Scholar
  18. 18.
    H. Godfrin, G. Frossati, B. Hebral, and D. Thoulouze,J. Phys. (Paris)41, C7–275 (1980), and references therein.Google Scholar
  19. 19.
    K. Bedell and D. Pines,Phys. Rev. Lett. 45, 39 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Kevin S. Bedell
    • 1
  • David E. Meltzer
    • 1
  1. 1.Department of PhysicsState University of New York at Stony BrookStony Brook

Personalised recommendations