Journal of Applied Electrochemistry

, Volume 26, Issue 8, pp 865–872 | Cite as

Modelling electrode transients: the strongly implicit procedure

  • J. A. Alden
  • R. G. Compton
  • R. A. W. Dryfe


The ‘strongly implicit procedure’ is shown to be a general, easy-to-use, stable and computationally efficient method of solving the mass transport equations necessary to predict transient voltammetric responses of electrode processes to which diffusion, convection and homogeneous chemical reaction may all contribute. The method is illustrated with a diversity of problems relating to electrodes of both micro- and milli-dimensions. In all cases excellent agreement with experiment and/or existing analytical or numerical theory is noted. Comparisons are made with alternative computational methods.


Physical Chemistry Convection Excellent Agreement Efficient Method Transport Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Lapidus and G. F. Pinder, ‘Numerical Solution of Partial Differential Equations in Science and Engineering’, J. Wiley & Sons, New York (1982).Google Scholar
  2. [2]
    D. Britz, ‘Digital Simulation in Electrochemistry’, Springer-Verlag, Berlin (1988).Google Scholar
  3. [3]
    H. L. Stone, SIAMJ. Numer. Anal. 5 (1968) 530.Google Scholar
  4. [4]
    K.-H. Chen and R. H. Pletcher,AIAA J. 29 (1991) 1241.Google Scholar
  5. [5]
    R. W. Walters, D. L. Dwoyer and H. A. Hassan,ibid. 24 (1986) 6.Google Scholar
  6. [6]
    G. E. Schneider and M. Zedan,Numerical Heat Transfer 4 (1981) 1.Google Scholar
  7. [7]
    M. Zedan and G. E. Schneider,ibid. 8 (1985) 537.Google Scholar
  8. [8]
    NAG Fortran Library Mark 13, National Algorithms Group, Oxford, vol. 3, section D03EPF, p. 3.Google Scholar
  9. [9]
    R. G. Compton, R. A. W. Dryfe, R. G. Wellington and J. Hirst,J. Electroanal. Chem. 383 (1995) 13.Google Scholar
  10. [10]
    A. R. Gourlay and G. R. McGuire,J. Inst. Math. Appl. 7 (1971) 216.Google Scholar
  11. [11]
    D. Shoup and A. Szabo,J. Electroanal. Chem. 160 (1984) 17.Google Scholar
  12. [12]
    R. M. Wightman and C. Amatore,ibid. 267 (1989) 33.Google Scholar
  13. [13]
    P. Pastore, F. Magno, J. Lavagnini and C. Amatore,ibid. 301 (1991) 1.Google Scholar
  14. [14]
    P. Laasonen,Acta Math. 81 (1949) 30917.Google Scholar
  15. [15]
    J. L. Anderson and S. Moldoveanu,J. Electroanal. Chem. 179 (1984) 107.Google Scholar
  16. [16]
    A. C. Fisher and R. G. Compton,J. Phys. Chem. 95 (1991) 7538.Google Scholar
  17. [17]
    V. G. Levich, ‘Physicochemical Hydrodynamics’, PrenticeHall, Englewood Cliffs, NJ (1962).Google Scholar
  18. [18]
    K. Oldham,J. Electroanal. Chem. 122 (1981) 1.Google Scholar
  19. [19]
    K. Aoki, K. Tokuda and H. Matsuda,Denki Kagaku 54 (1986) 1010.Google Scholar
  20. [20]
    K. Aoki, K. Tokuda and H. Matsuda,J. Electroanal. Chem. 230 (1987) 61.Google Scholar
  21. [21]
    A. Szabo, D. K. Cope, D. E. Tallman, P. M. Kovach and R. W. Wightman,ibid. 217 (1987) 417.Google Scholar
  22. [22]
    K. Aoki,Electroanalysis 5 (1993) 1.Google Scholar
  23. [23]
    F. G. Cottrell,Z. Physik. Chem. 42 (1902) 385.Google Scholar
  24. [24]
    M. E. Peover,J. Chem. Soc. (1962) 4540.Google Scholar
  25. [25]
    R. G. Compton, R. A. W. Dryfe, J. A. Alden, N. V. Rees, P. J. Dobson and P. A. Leigh,J. Phys. Chem. 98 (1994) 1270.Google Scholar
  26. [26]
    R. G. Compton, R. G. Wellington, P. J. Dobson and P. A. Leigh,J. Electroanal. Chem. 370 (1994) 129.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • J. A. Alden
    • 1
  • R. G. Compton
    • 1
  • R. A. W. Dryfe
    • 1
  1. 1.Physical and Theoretical Chemistry LaboratoryOxford UniversitySouth Parks Road, OxfordGreat Britain

Personalised recommendations