Skip to main content
Log in

Nucleation and crystal growth in gold electrodeposition from acid solution Part I: Soft gold

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The initial stages of gold electrodeposition on a gold electrode were studied in a proprietary bath (Renovel N) using linear sweep voltammetry and chronoamperometry. Tafel plots with two different slopes were obtained, indicating that the mechanism for gold deposition depends on potential. An inhibition phenomenon was observed during gold electrocrystallization. Experimental current-time transients were analysed using nonlinear least-squares approximations by various models of nucleation and crystal growth. The electrodeposition mechanism changes from three-dimensional progressive at lower overpotentials to three-dimensional instantaneous at higher overpotentials. Moreover, additional two-dimensional progressive or a secondary three-dimensional progressive processes take place in certain potential ranges. It was shown that the outward growth rate of the substrate's base plane displays a linear Tafel relationship whereas the vertical growth rate of gold crystals decreases at more negative potentials due to an inhibition process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. Christie and B. P. Cameron,Gold Bull. 27 (1994) 12.

    Google Scholar 

  2. F. R. Schlodder, H. H. Beyer and W. G. Zilske, ‘GOLD 100’: Proceedings of the International Conference on Gold, Johannesburg (1986), vol. 3, p. 21.

    Google Scholar 

  3. H. Y. Cheh,J. Electrochem. Soc. 118 (1971) 551.

    Google Scholar 

  4. H. G. Silver,ibid. 116 (1969) 26C.

  5. H. Angerer and N. Ibl,J. Appl. Electrochem. 9 (1979) 219.

    Google Scholar 

  6. C. Buelens, J. P. Celis and J. R. Roos,ibid. 13 (1983) 541.

    Google Scholar 

  7. J. A. Harrison and J. Thompson,J. Electroanal. Chem. 40 (1972) 113.

    Google Scholar 

  8. I. R. Burrows, J. A. Harrison and J. Thompson,ibid. 53 (1974) 283.

    Google Scholar 

  9. H. Y. Cheh and R. Sard,J. Electrochem. Soc. 118 (1971) 1737.

    Google Scholar 

  10. J. D. E. McIntyre and W. F. Peck, Jr.,ibid. 123 (1976) 1800.

    Google Scholar 

  11. D. M. MacArthur,ibid. 119 (1972) 672.

    Google Scholar 

  12. E. T. Eisenmann,ibid. 125 (1978) 717.

    Google Scholar 

  13. M. Beltowska-Brzezinska, E. Dutkiewicz and W. Lawicki,J. Electroanal. Chem. 99 (1979) 341.

    Google Scholar 

  14. P. Bindra, D. Light, P. Freudenthal and D. Smith,J. Electrochem. Soc. 136 (1989) 3616.

    Google Scholar 

  15. G. A. Kurnoskin, V. N. Flerov, A. N. Moskvichev and A. O. Rózhdestvenskii,Elektrokhimiya 22 (1987) 1124.

    Google Scholar 

  16. A. Survila, V. Mockevicius and R. Višomirskis,ibid. 23 (1987) 816.

    Google Scholar 

  17. J. Horkans and L. T. Romankiw,J. Electrochem. Soc. 124 (1977) 1499.

    Google Scholar 

  18. J. W. M. Jacobs and J. M. G. Rikken,ibid. 136 (1989) 3633.

    Google Scholar 

  19. V. J. Scocha, E. Raub and A. Knödler,Metalloberflaeche-Angew, Electrochem. 27 (1973) 1.

    Google Scholar 

  20. B. Vincent, P. Bercot, G. F. Creusat, G. Messin and J. Pagetti,Plat. Surf. Finish. 77 (1990) 71.

    Google Scholar 

  21. J. A. Harrison and J. Thompson,J. Electroanal. Chem. 59 (1975) 273.

    Google Scholar 

  22. D. Davidović and R. R. Adzić,Electrochim. Acta 33 (1988) 103.

    Google Scholar 

  23. E. Matulionis and A. Dziuve,Chemija 178 (1990) 44.

    Google Scholar 

  24. S. T. Rao and R. Weil,J. Electrochem. Soc. 127 (1980) 1030.

    Google Scholar 

  25. S. T. Rao and R. Weil,Trans. Inst. Met. Finish. 57 (1979) 97.

    Google Scholar 

  26. K. Lin, R. Weil and K. Desai,J. Electrochem. Soc. 133 (1986) 690.

    Google Scholar 

  27. K. L. Lin, W. C. Liu, M. H. M. Lin and Y. W. Liu,ibid. 138 (1991) 3276.

    Google Scholar 

  28. G. Holmbom and B. E. Jacobson,ibid. 135 (1988) 2720.

    Google Scholar 

  29. C. Bocking and C. Cameron,Trans. I. M. F. 72 (1994) 33.

    Google Scholar 

  30. C. Bocking and C. Dineen,ibid. 72 (1994) 101.

    Google Scholar 

  31. W. Chrzanowski, Y. G. Li and A. Lasia,J. App. Electrochem., in press.

  32. Y. G. Li and A. Lasia,J. Appl. Electrochem. 26 (1996) 853–863.

    Google Scholar 

  33. M. Fleischmann and H. R. Thirsk,in ‘Advances in Electrochemistry and Electrochemical Engineering’, Vol. 3 (edited by P. Delahay and C. Tobias) Wiley Interscience, New York (1963), p. 123.

    Google Scholar 

  34. J. A. Harrison and H. R. Thirsk,in ‘Electroanalytical Chemistry’, Vol. 5 (edited by A. J. Bard) Marcel Dekker, London (1971), p. 67.

    Google Scholar 

  35. I. R. Burrows, J. A. Harrison and J. Thompson,J. Electroanal. Chem. 58 (1975) 241.

    Google Scholar 

  36. J. A. Harrison, H. B. Sierra Alcazar and J. Thompson,ibid. 53 (1974) 145.

    Google Scholar 

  37. A. Hernandez Creus, P. Carro, S. González, R. C. Salvarezza and A. J. Arvia,Electrochim Acta 37 (1992) 2215.

    Google Scholar 

  38. M. Y. Abyaneh and M. Fleischmann,J. Electroanal. Chem. 119 (1981) 187, 197.

    Google Scholar 

  39. M. Y. Abyaneh, J. Hendrikx, W. Visscher and E. Barendrecht,J. Electrochem. Soc. 129 (1982) 2654.

    Google Scholar 

  40. V. G. Roev and N. V. Gudin,Elektrokhimiya 31 (1995) 532.

    Google Scholar 

  41. A. J. Bard and L. R. Faulkner, ‘Electrochemical Methods (Fundamentals and Applications)’, John Wiley & Sons, New York (1980), p. 304.

    Google Scholar 

  42. Y. G. Li and A. Lasia, under preparation.

  43. D. S. Gnanamuthu and J. V. Petrocelli,J. Electrochem. Soc. 114 (1967) 1036.

    Google Scholar 

  44. S. Nakahara and Y. Okinaka,ibid. 128 (1981) 284.

    Google Scholar 

  45. G. Holmbom and B. E. Jacobson,ibid. 135 (1988) 787.

    Google Scholar 

  46. Y. Okinaka and S. Nakahara,ibid. 123 (1976) 1284.

    Google Scholar 

  47. Y. Okinaka, Proceedings of the Symposium on Electrodeposition Technology, Theory and Practice, Electrochemical Society, Pennington NJ (1987), p. 147.

    Google Scholar 

  48. G. B. Munier,Plating 56 (1967) 1151.

    Google Scholar 

  49. H. Baltruschat and J. Heitbaum,J. Electroanal. Chem. 157 (1983) 319.

    Google Scholar 

  50. D. H. Son and K. Kim,Bull. Korean Chem. Soc. 15 (1994) 357.

    Google Scholar 

  51. E. B. Budevski,in ‘Comprehensive Treatise of Electrochemistry’, Vol. 7 (edited by B. E. Conway, J. O'M. Bockis, E. Yeager, S. U. M. Khan and R. E. White), Plenum Press, London (1983), p. 399 and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.G., Chrzanowski, W. & Lasia, A. Nucleation and crystal growth in gold electrodeposition from acid solution Part I: Soft gold. J Appl Electrochem 26, 843–852 (1996). https://doi.org/10.1007/BF00683747

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683747

Keywords

Navigation