Skip to main content
Log in

Ion exchange and charge transport properties of polymeric tris(4-vinyl-4′-methyl-2,2′-bipyridine) ruthenium(II) films

  • Papers
  • Published:
Journal of Inorganic and Organometallic Polymers Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Multiply charged electroactive anions [IrCl 2−6 , Fe(CN) 3−6 , and W(CN) 4−8 ] are electrostatically incorporated in polymeric films of tris(4-vinyl-4′-methyl-2,2′-bipyridine) ruthenium(II) [poly-Ru(vbpy) 2+3 ] from aqueous trifluoroacetate solution. Values of apparent diffusion coefficients (D ct) and heterogenous electron transfer rates (k et) are measured for these anions as a function of their relative concentration (Γ M/Γ Ru) in the film.D ct andk et decrease systematically asΓ M/Γ Ru increases in a manner that is independent of charge and chemical identity of the ion. This result suggests that a nonchemical process, presumably electrostatic cross-linking, limits diffusional motion and is responsible for the decrease inD ct andk et with increasing anion content. Protonated polyvinyl-pyridine films exhibit similar ranges and variations inD ct andk et, which suggest similar structures and mechanisms of charge transport for these films and poly-Ru(vbpy) 2+3 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Denisevich, H. D. Abruña, C. R. Leidner, T. J. Meyer, and R. W. Murray,Inorg. Chem. 21, 2153 (1982).

    Google Scholar 

  2. C. M. Elliott, C. J. Baldy, L. M. Nuwaysir, and C. L. Wilkins,Inorg. Chem. 29, 389 (1990).

    Google Scholar 

  3. H. D. Abruña, P. Denisevich, M. Umaña, T. J. Meyer, and R. N. Murray,J. Am. Chem. Soc. 103, 1 (1981).

    Google Scholar 

  4. P. Denisevich, K. W. Willman, and R. W. Murray,J. Am. Chem. Soc. 103, 4727 (1981).

    Google Scholar 

  5. T. Ikeda, C. R. Leidner, and R. W. Murray,J. Elektroanal. Chem. 138, 343 (1982).

    Google Scholar 

  6. T. Ikeda, R. Schmehl, P. Denisevich, K. Willman, and R. W. Murray,J. Am. Chem. Soc. 104, 2683 (1982).

    Google Scholar 

  7. P. G. Pickup, C. R. Leidner, P. Denisevich, and R. W. Muray,J. Electronal. Chem. 164, 39 (1984).

    Google Scholar 

  8. A. G. Ewing, B. J. Feldman, and R. W. Murray,J. Phys. Chem. 89, 1263 (1985).

    Google Scholar 

  9. C. E. D. Chidsey and R. W. Murray,Science 231, 25 (1986).

    Google Scholar 

  10. N. Oyama and F. C. Anson,J. Elektrochem. Soc. 127, 247 (1980).

    Google Scholar 

  11. N. Oyama, T. Shimomura, K. Shigehara, and F. C. Anson,J. Elektroanal. Chem. 112, 271 (1980).

    Google Scholar 

  12. N. Oyama and F. C. Anson,Anal. Chem. 52, 1192 (1980).

    Google Scholar 

  13. J. A. Bruce and M. S. Wrighton,J. Am. Chem. Soc. 104, 74 (1982).

    Google Scholar 

  14. J. R. Schneider and R. W. Murray,Annal. Chem. 54, 1508 (1982).

    Google Scholar 

  15. B. Lindholm and M. Sharp,J. Electronanal. Chem. 198, 37 (1986).

    Google Scholar 

  16. J. Wang,Elektroanal. Chem. 16, 1 (1989).

    Google Scholar 

  17. F. C. Anson,J. Phys. Chem. 84, 3336 (1980).

    Google Scholar 

  18. I. Rubinstein and A. J. Bard,J. Am. Chem. Soc. 102, 6641 (1980).

    Google Scholar 

  19. K. N. Kuo and R. W. Murray,J. Elektroanal. Chem. 131, 37 (1982).

    Google Scholar 

  20. C. J. Pickett, K. S. Ryder, and J. C. Moutet,J. Chem. Soc. Dalton Trans. 21–24, 3695 (1993).

    Google Scholar 

  21. F. B. Kaufman, A. H. Schroeder, E. M. Engler, S. R. Kramer, and J. Q. Chambers,J. Am. Chem. Soc. 102, 483 (1980).

    Google Scholar 

  22. P. Daum, J. R. Lenhard, D. Rolison, and R. W. Murray,J. Am. Chem. Soc. 102, 4649 (1980).

    Google Scholar 

  23. J. Facci and R. W. Murray,J. Electroanal. Chem. 124, 339 (1981).

    Google Scholar 

  24. J. Facci and R. W. Murray,J. Phys. Chem. 85, 2870 (1981).

    Google Scholar 

  25. D. A. Buttry and F. C. Anson,J. Elektronanal. Chem. 130, 333 (1981).

    Google Scholar 

  26. R. J. Mortimer and F. C. Anson,J. Elektroanal. Chem. 138, 325 (1982).

    Google Scholar 

  27. D. A. Buttry and F. C. Anson,J. Am. Chem. Soc. 105, 685 (1983).

    Google Scholar 

  28. J. M. Saveant,J. Phys. Chem. 92, 4526 (1988).

    Google Scholar 

  29. N. Oyama, S. Yamaguchi, Y. Nishiki, K. Tukoda, H. Matsuda, and F. C. Anson,J. Elektroanal. Chem. 139, 371 (1982).

    Google Scholar 

  30. N. Oyama, T. Ohsaka, M. Kaneko, K. Sato, and H. Matsuda,J. Am. Chem. Soc. 105, 6003 (1983).

    Google Scholar 

  31. N. Oyama, T. Ohsaka, and T. Ushirogouchi,J. Phys. Chem. 88, 5274 (1984).

    Google Scholar 

  32. L. R. Faulkner,Electrochim. Acta 34, 1699 (1989).

    Google Scholar 

  33. N. Oyama and T. Ohsaka, inMacromolecular Complexes: Dynamic Interactions and Electronic Processes, E. Tsuchida, ed. (VCH, New York, 1991), pp. 275–313.

    Google Scholar 

  34. J. N. Braddock and T. J. Meyer,J. Am. Chem. Soc. 95, 3158 (1973).

    Google Scholar 

  35. H. D. Abruña, A. I. Breikss, and D. B. Collum,Inorg. Chem. 24, 987 (1985).

    Google Scholar 

  36. E. A. Heintz,Inorg. Synth. 7, 142 (1963).

    Google Scholar 

  37. H. Matsuda,Bull. Chem. Soc. Jap. 53, 3439 (1980).

    Google Scholar 

  38. A. J. Bard and L. R. Faulkner,Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 1980), p. 218.

    Google Scholar 

  39. K. Sumi and F. C. Anson,J. Phys. Chem. 90, 3845 (1986).

    Google Scholar 

  40. T. Inoue and F. C. Anson,J. Phys. Chem. 91, 1519 (1987).

    Google Scholar 

  41. M. J. Weaver, inComprehensive Chemical Kinetics, Vol. 27, R. G. Compton, ed., (Elsevier, Amsterdam, 1987), pp. 1–60.

    Google Scholar 

  42. C. Amatore, J. M. Saveant, and D. Tessier,J. Electroanal. Chem. 147, 39 (1983).

    Google Scholar 

  43. T. Gueshi, K. Tokuda, and H. Matsuda,J. Electronanal. Chem. 101, 29 (1979).

    Google Scholar 

  44. F. A. Armstrong, A. M. Bond, H. A. O. Hill, I. S. Psalti, and C. G. Zoski,J. Phys. Chem. 93, 6485 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasem, K.K., Schultz, F.A. Ion exchange and charge transport properties of polymeric tris(4-vinyl-4′-methyl-2,2′-bipyridine) ruthenium(II) films. J Inorg Organomet Polym 4, 377–390 (1994). https://doi.org/10.1007/BF00683702

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683702

Key words

Navigation