Journal of Inorganic and Organometallic Polymers

, Volume 4, Issue 4, pp 343–366 | Cite as

Determining the extent of reaction by29Si NMR of abrasion-resistant hybrid sol-gel coatings based on triethoxysilane functionalized organics

  • Chinmay S. Betrabet
  • Garth L. Wilkes


Diethylenetriamine, melamine, and low molecular weight branched polyethylenimine were functionalized separately with 3-isocyanatopropyltriethoxysilane. Coatings on polycarbonate were prepared from these compounds through the sol-gel process. The extent of reaction and the relative species concentration of the trifunctional silicon atom were obtained from29Si CP-MAS NMR measurements. The sol-gel reaction was found to be limited by vitrification. A variety of silicon species was present in the vitrified coating. The extent of reaction could be increased by increasing the curing temperature, curing for longer times, and increasing the acid concentration. The extent of reaction was also found to be related to the basicity of the functionalized organic backbone.

Key words

29Si nuclear magnetic resonance extent of reaction hybrid sol-gel coatings triethoxysilane functionalized organics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Wang and G. L. Wilkes, ACS Polymer Preprints, Aug. (1991).Google Scholar
  2. 2.
    C. Betrabet and G. L. Wilkes, ACS Polymer Preprints, Aug. (1992).Google Scholar
  3. 3.
    H. L. Vincent, D. J. Kimball, and R. R. Boundy, inPolymer Wear and Its Control, ACS Symposium Series, No. 287, L. H. Lee, eds. (ACS, Washington, DC, 1985), pp. 129–134.Google Scholar
  4. 4.
    H. Schmidt and H. Wolter,J. Non Cryst. Solids 121, 428–435 (1990).Google Scholar
  5. 5.
    C. J. Brinker and G. W. Scherer,Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).Google Scholar
  6. 6.
    G. C. Levy, J. D. Cargioli, P. C. Juliano, and T. D. Mitchell,J. Am. Chem. Soc. 95(11), 3445–3454 (1973).Google Scholar
  7. 7.
    E. A. Williams,Annual Reports on NMR Spectroscopy, Vol. 15 (Academic Press, New York, 1983), pp. 235–289.Google Scholar
  8. 8.
    J. L. Koenig,Spectroscopy of Polymers, ACS Professional Reference Book (ACS, Washington, DC, 1992).Google Scholar
  9. 9.
    G. S. Caravajal, D. E. Leyden, and G. E. Maciel, inSilanes, Surfaces and Interfaces, D. E. Leyden, ed. (Gordon and Breach Science, New York, 1985).Google Scholar
  10. 10.
    K. Hoh, H. Ishida, and J. L. Koenig,Polym. Comp. 11(2), 121–125 (1990).Google Scholar
  11. 11.
    H. Marsman, inNMR, Oxygen-17 and Silicon-29, P. Diehl, E. Fluck, and R. Kosfield, eds. (Springer Verlag, New York, 1981), pp. 65–235.Google Scholar
  12. 12.
    B. W. Peace, K. G. Mayhan, and J. F. Montle,Polymer 14, 420–422 (1973).Google Scholar
  13. 13.
    J. W. De Haan, H. M. Van Den Bogaert, J. J. Ponjee, and L. J. M. Van De Ven,J. Colloid Interface Sci. 110(2), 591–600 (1986).Google Scholar
  14. 14.
    E. O. Stejskal, J. Schaefer, M. D. Sefcik, and R. A. McKay,Macromolecules 14, 275–279 (1981).Google Scholar
  15. 15.
    R. H. Glaser, Ph.D. thesis (Virginia Polytechnic Institute and State University, Blacksburg, 1988).Google Scholar
  16. 16.
    C. J. Brinker, R. J. Kirkpatrick, D. R. Tallant, B. C. Bunker, and B. Montez,J. Non-Cryst. Solids 99, 418–428 (1988).Google Scholar
  17. 17.
    G. E. Maciel and D. W. Sindorf,J. Am. Chem. Soc. 102, 7606–7607 (1980).Google Scholar
  18. 18.
    M. P. Besland, C. Guizard, N. Hovnanian, A. Labot, L. Cot, J. Sanz, I. Sobradas, and M. Gregorkiewitz,J. Am. Chem. Soc. 113, 1982–1987 (1991).Google Scholar
  19. 19.
    D. W. Sindorf and G. E. Maciel,J. Am. Chem. Soc. 105(12), 3767–3776 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Chinmay S. Betrabet
    • 1
  • Garth L. Wilkes
    • 1
  1. 1.Department of Chemical Engineering and Polymer Materials and Interfaces LaboratoryVirginia Polytechnic Institute and State UniversityBlacksburg

Personalised recommendations