Journal of Low Temperature Physics

, Volume 84, Issue 5–6, pp 357–380 | Cite as

Variational investigation of low dimensional correlated electron systems via the limit of high dimensions

  • Rainer Strack
  • Dieter Vollhardt
Article

Abstract

We show that the limit of large dimensions (d=∞) can be used to obtain accurate variational results even for low dimensional (d=1, 2) fermionic systems, such as the Hubbard model or the periodic Anderson model. Using explicit correlated variational wave functions this is achieved by evaluating the expectation values for d=∞ with the correct d-dimensional density of states and including 1/d-corrections. For example, an application of this approach to the periodic Anderson model in d=1 shows that the result for the ground state energy, the momentum distributions of c- and f-electrons, and the spin-spin and density-density correlations functions for the f-electrons are in excellent agreement with the variational Monte Carlo data of Shiba.

Keywords

Wave Function Correlation Function State Energy Excellent Agreement High Dimension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a brief review, see D. Vollhardt, inInteracting Electrons in Reduced Dimensions, eds. D. Baeriswyl and D. Campbell (Plenum Press, New York, 1989), p. 107.Google Scholar
  2. 2.
    M. C. Gutzwiller,Phys. Rev. Lett. 10, 159 (1963);Phys. Rev. A 137, 1726 (1965).Google Scholar
  3. 3.
    For a brief review, see D. Vollhardt, P. G. J. van Dongen, F. Gebhard, and W. Metzner,Mod. Phys. Lett. B 4, 499 (1990).Google Scholar
  4. 4.
    W. Metzner and D. Vollhardt,Phys. Rev. Lett. 59, 121 (1987);Phys. Rev. B 37, 7382 (1988).Google Scholar
  5. 5.
    W. Metzner and D. Vollhardt,Phys. Rev. Lett. 62, 324 (1989).Google Scholar
  6. 6.
    For recent reviews, see E. Müller-Hartmann,Int. J. Mod. Phys. B 3, 2169 (1989); D. Vollhardt,Physica B 169, 277 (1991).Google Scholar
  7. 7.
    W. Metzner,Z. Phys. B 77, 253 (1989).Google Scholar
  8. 8.
    F. Gebhard, Doctoral Thesis, RWTH Aachen, 1990 (unpublished).Google Scholar
  9. 9.
    F. Gebhard,Phys. Rev. B 41, 9452 (1990).Google Scholar
  10. 10.
    P. Fazekas, B. Menge, and E. Müller-Hartmann,Z. Phys. B 78, 69 (1990).Google Scholar
  11. 11.
    W. Metzner,Z. Phys. B 82, 183 (1991).Google Scholar
  12. 12.
    P. van Dongen, F. Gebhard, and D. Vollhardt,Z. Phys. B 76, 199 (1989).Google Scholar
  13. 13.
    F. Gebhard and D. Vollhardt, inInteracting Electrons In Reduced Dimensions, eds. D. Baeriswyl and D. Campbell (Plenum Press, New York, 1989), p. 123.Google Scholar
  14. 14.
    H. Yokoyama and H. Shiba,J. Phys. Soc. Jpn,56, 1490 (1987);56, 3570 (1987).Google Scholar
  15. 15.
    H. Yokoyama and H. Shiba,J. Phys. Soc. Jpn. 56, 3582 (1987).Google Scholar
  16. 16.
    T. M. Rice and K. Ueda,Phys. Rev. Lett. 55, 995 (1985);55, 2093 (E) (1985);Phys. Rev. 34, 6420 (1986).Google Scholar
  17. 17.
    B. H. Brandow,Phys. Rev. B 33, 215 (1986).Google Scholar
  18. 18.
    H. Shiba,J. Phys. Soc. Jpn. 55, 2765 (1986).Google Scholar
  19. 19.
    19. H. Shiba, private communication.Google Scholar
  20. 20.
    G. Kotliar and A. Ruckenstein,Phys. Rev. Lett. 57, 1362 (1986).Google Scholar
  21. 21.
    This is similar to the approach by D. Baeriswyl [inNonlinearity in Condesnsed Matter, eds. R. Bishopet al., Springer Series in Solid State Sciences, Vol. 69 (Springer, Berlin 1987), p. 103] who thereby constructed a VWF for thed=1 Hubbard model to lowest order int/U.Google Scholar
  22. 22.
    U. Wolff,Nucl. Phys. B 225, [FS9] 391 (1983).Google Scholar
  23. 23.
    E. Müller-Hartmann,Z. Phys. B 74, 507 (1989).Google Scholar
  24. 24.
    E. H. Lieb and F. Y. Wu,Phys. Rev. Lett. 20, 1445 (1968).Google Scholar
  25. 25.
    See for example, P. A. Lee, T. M. Rice, J. W. Serene, L. J. Sham, and J. W. Wilkins,Comments Cond. Matt. Phys. 12, 99 (1986).Google Scholar
  26. 26.
    F. Gebhard,Phys. Rev. B 44, 992 (1991).Google Scholar
  27. 27.
    C. M. Varma, W. Weber, and L. J. Randall,Phys. Rev. B 33, 1015 (1985).Google Scholar
  28. 28.
    P. Fazekas and B. H. Brandow,Phys. Scripta 36, 809 (1987).Google Scholar
  29. 29.
    V. Z. Vulović and E. Abrahams,Phys. Rev. B 36, 2614 (1987).Google Scholar
  30. 30.
    F. Gebhard and D. Vollhardt,Phys. Rev. Lett. 59, 1472 (1987);Phys. Rev. 37, 7382 (1988).Google Scholar
  31. 31.
    T. Yanagisawa,Phys. Rev. B 37, 2050 (1988).Google Scholar
  32. 32.
    P. van Dongen and D. Vollhardt,Phys. Rev. Lett. 65, 1663 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Rainer Strack
    • 1
  • Dieter Vollhardt
    • 1
  1. 1.Institut für Theoretische Physik CTechnische Hochschule AachenAachenGermany

Personalised recommendations