Journal of Low Temperature Physics

, Volume 83, Issue 1–2, pp 1–13 | Cite as

Theory of paramagnetic spin waves in simple metals in a direct-current magnetic field

  • S. J. Gładysz
  • M. Ahmad


The transverse dynamic spin susceptibility of a normal, charged Fermi liquid is found. The formula depends on the first three antisymmetric Landau parametersB0,B1,B2 and is exact to orderk2 in the expressions both for the energy of spin waves and their oscillator strengths. It contains spin-wave poles with1=0 and 1 and easily reproduces all the results obtained previously by perturbation theory.


Magnetic Field Perturbation Theory Magnetic Material Oscillator Strength Spin Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Silin,Zh. Eksp. Teor. Fiz. 35, 1243 (1958).Google Scholar
  2. 2.
    L. D. Landau,Zh. Eksp. Teor. Fiz. 30, 1058 (1956);32, 49 (1957).Google Scholar
  3. 3.
    V. P. Silin,Zh. Eksp. Teor. Fiz. 33, 495 (1957); see also V. P. Silin,Fiz. Met. and Metalloved. 29, 681 (1970).Google Scholar
  4. 4.
    S. Schultz and G. Dunifer,Phys. Rev. Lett. 18, 283 (1967).Google Scholar
  5. 5.
    G. Dunifer, S. Schultz, and P. H. Schmidt,J. Appl. Phys. 39, 397 (1968).Google Scholar
  6. 6.
    P. M. Platzman, L. M. Walsh, and E.-N. Foo,Phys. Rev. 172, 680 (1968).Google Scholar
  7. 7.
    G. L. Dunifer, D. Pinkel, and S. Schultz,Phys. Rev. B 10, 3159 (1974).Google Scholar
  8. 8.
    P. M. Platzman and P. A. Wolff,Phys. Rev. Lett. 18, 280 (1967).Google Scholar
  9. 9.
    P. M. Platzman and P. A. Wolff,Waves and Interactions in Solid State Plasma (Academic Press, N.Y., 1973), Chap. 10.Google Scholar
  10. 10.
    J. Czerwonko,Jpn. J. Appl. Phys. (Suppl.)26, 223 (1987).Google Scholar
  11. 11.
    J. Czerwonko,Physica 143A, 414 (1987).Google Scholar
  12. 12.
    S. A. Bogacz and J. B. Ketterson,J. Low Temp. Phys. 71, 445 (1988).Google Scholar
  13. 13.
    S. Stringari and F. Dalfovo,J. Low Temp. Phys. 78, 1 (1990).Google Scholar
  14. 14.
    D. Candella, N. Masuhara, D. Sherill, and D. O. Edwards,J. Low Temp. Phys. 63, 331 (1986).Google Scholar
  15. 15.
    N. Masuhara, D. Candella, D. O. Edwards, R. F. Hoyt, H. N. Schultz, and D. S. Sherill,Phys. Rev. Lett. 53, 1168 (1984).Google Scholar
  16. 16.
    B. J. McIntyre, S. C. Ying, and J. J. Quinn,Phys. Rev. Lett. 21, 1244 (1968).Google Scholar
  17. 17.
    S. C. Ying and J. J. Quinn,Phys. Rev. 180, 218 (1969).Google Scholar
  18. 18.
    A. Willson and D. R. Fredkin,Phys. Rev. B 2, 4656 (1970).Google Scholar
  19. 19.
    A. A. Abrikosov,Fundamentals of the Theory of Metals (North-Holland, N.Y., 1988), Chap. 13.Google Scholar
  20. 20.
    G. Baym and C. J. Pethick inThe Physics of Liquid and Solid Helium, K. H. Benneman and J. B. Ketterson, eds. (Wiley, N.Y., 1978), p. 1.Google Scholar
  21. 21.
    G. Arfken,Mathematical Methods for Physicists (Academic Press, N.Y., 1970), Chap. 12.Google Scholar
  22. 22.
    M. Ahmad,Phys. Stat. Sol. (b)154, K163 (1989).Google Scholar
  23. 23.
    M. Ahmad and S. J. Gładysz,Phys. Stat. Sol. (b)159, K119 (1990).Google Scholar
  24. 24.
    I. Ya. Pomeranchuk,Zh. Eksp. Teor. Fiz. 35, 524 (1958).Google Scholar
  25. 25.
    A. J. Legett,Ann. Phys. 46, 76 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • S. J. Gładysz
    • 1
  • M. Ahmad
    • 1
  1. 1.Institute of PhysicsTechnical University of WrocławwrocławPoland

Personalised recommendations