Advertisement

Journal of Low Temperature Physics

, Volume 80, Issue 3–4, pp 153–160 | Cite as

Low-temperature thermal conductivity of a glassy epoxy-epoxy composite

  • Da-Ming Zhu
  • A. C. Anderson
Article

Abstract

The thermal conductivities of epoxy resins filled with particles which are identical to the resin matrix have been measured from 0.025 to 9 K. The thermal conductivities of the filled epoxy resins are decreased slightly by the presence of the epoxy particles. This reduction for different epoxies, filling factors, and particle sizes is explained by an increase of about a factor of two in phonon scattering within a boundary layer between particle and matrix.

Keywords

Particle Size Boundary Layer Thermal Conductivity Epoxy Magnetic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Grace and A. C. Anderson,Phys. Rev. B 40, 1901 (1989); J. M. Grace, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1988 (unpublished).Google Scholar
  2. 2.
    J. J. Freeman, J. X. Mack, and A. C. Anderson,J. Non-Cryst. Solids 86, 407 (1986).Google Scholar
  3. 3.
    J. X. Mack, J. J. Freeman, and A. C. Anderson,J. Non-Cryst. Solids 91, 391 (1987).Google Scholar
  4. 4.
    A. C. Anderson, inAmorphous Solids, W. A. Phillips, ed. (Springer-Verlag, Berlin, 1981).Google Scholar
  5. 5.
    J. J. Freeman and A. C. Anderson,Phys. Rev. B 34, 5684 (1986).Google Scholar
  6. 6.
    G. P. Sherg, Ph.D. Thesis, Technischen Universitat München, 1989 (unpublished).Google Scholar
  7. 7.
    A. C. Anderson and R. B. Rauch,J. Appl. Phys. 41, 3648 (1970).Google Scholar
  8. 8.
    C. Schmidt,Cryogenics 15, 17 (1975).Google Scholar
  9. 9.
    W. A. Little,Can. J. Phys. 37, 334 (1959).Google Scholar
  10. 10.
    W. Scheibner and M. Jackel,Phys. Status Solidi A 87, 543 (1985).Google Scholar
  11. 11.
    See, for example, J. M. H. M. Scheutjens and G. J. Fleer,J. Phys. Chem. 84, 178 (1980).Google Scholar
  12. 12.
    M. Def, F. Pinheiro, and H. M. Rosenberg,J. Polymer Sci. A-2 18, 217 (1980).Google Scholar
  13. 13.
    W. Scheibner, R. Haszler, M. Stephan, and M. Jackel,Phys. Status Solidi A90, K135 (1985).Google Scholar
  14. 14.
    C. L. Reynolds and A. C. Anderson,J. Low Temp. Phys. 21, 641 (1975).Google Scholar
  15. 15.
    D. S. Matsumoto, C. L. Reynolds, Jr., and A. C. Anderson,Phys. Rev. B 16, 3303 (1977).Google Scholar
  16. 16.
    D. S. Matsumoto, C. L. Reynolds, Jr., and A. C. Anderson,Phys. Rev. B 19 (1979).Google Scholar
  17. 17.
    A. C. Anderson, R. E. Peterson, and J. E. Robichaux,Rev. Sci. Instrum. 41, 528 (1970).Google Scholar
  18. 18.
    R. E. Meredith and C. W. Tobias,J. Appl. Phys. 31, 1270 (1960).Google Scholar
  19. 19.
    S. Kelham and H. M. Rosenberg,J. Phys. C 14, 1737 (1981).Google Scholar
  20. 20.
    M. P. Zaitlin, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1975 (unpublished).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Da-Ming Zhu
    • 1
  • A. C. Anderson
    • 1
  1. 1.Department of Physics and Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbana

Personalised recommendations