Skip to main content
Log in

The decay rate of critical fluctuations in3He-4He mixtures near the gas-liquid critical point

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have measured the critical light scattering intensity and the Rayleigh line shape for3He and for3He-4He mixtures with compositionX(3He)=0.95, 0.79, and 0.63 along their respective critical isochores near the plait point. The experimental linewidth of3He is compared with the calculated one from heat conductivity and equation of state measurements, and satisfactory agreement is obtained. For mixtures, gravity effects in our cell of finite height prevent us from reaching the critical point along a path at strictly constant composition and density. HenceT c cannot be determined directly. Using the prediction that the scattered light intensity in the mixtures has the same diverging behavior as for the pure fluid, we determine the reduced temperaturet≡[T − T c(X)]/T c from the intensity. The measured Rayleigh line shape can be expressed by a single decay rate Γ as a function oft for a given scattering angle of the light beam. Our experiments show that Γ in the mixtures is only weakly dependent on composition. Our analysis leads to the determination of the mass diffusion coefficientD, which is found to be nearly independent of composition and nearly equal to the thermal diffusivityD T measured for3He. The results are discussed in the light of the predictions from mode coupling theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. Hohenberg and B. J. Halperin,Rev. Mod. Phys. 49, 435 (1977).

    Google Scholar 

  2. H. L. Swinney and D. L. Henry,Phys. Rev. A 8, 2586 (1973).

    Google Scholar 

  3. H. C. Burstyn, J. V. Sengers, and P. Esfandiary,Phys. Rev. A 22, 282 (1980); H. C. Burstyn and J. V. Sengers,Phys. Rev. A 27, 1071 (1983) and references therein.

    Google Scholar 

  4. H. Guttinger and D. S. Cannell,Phys. Rev. A 22, 285 (1980) and references therein.

    Google Scholar 

  5. M. Giglio and A. Vendramini,Opt. Commun. 9, 80 (1973).

    Google Scholar 

  6. D. L. Henry, L. E. Evans, and R. Kobayashi,J. Chem. Phys. 66, 1802 (1977).

    Google Scholar 

  7. B. J. Ackerson and J. H. M. Hanley,J. Chem. Phys. 73, 3568 (1980).

    Google Scholar 

  8. R. F. Chang and T. Doiron, inProceedings of the 8th Symposium on Thermophysical Properties, J. V. Sengers, ed. (American Society of Mechanical Engineers, New York, 1982), Vol. 1, p. 458.

    Google Scholar 

  9. Y. Miura, H. Meyer, and A. Ikushima,Phys. Lett. 91, 309 (1982).

    Google Scholar 

  10. L. Mistura,Nuovo Cimento B 12, 35 (1972);J. Chem. Phys. 62, 4571 (1975).

    Google Scholar 

  11. H. McHugh and M. E. Paulaitis,J. Chem. Eng. Data 25, 326 (1980); Conference on Fluid Properties and Phase Equilibria for Chemical Process Design, Callaway Gardens, Georgia, April 10–15, 1983.

    Google Scholar 

  12. C. E. Pittman, L. H. Cohen, and H. Meyer,J. Low Temp. Phys. 46, 115 (1982).

    Google Scholar 

  13. L. H. Cohen, M. Dingus, and H. Meyer,J. Low Temp. Phys. 49, 545 (1982).

    Google Scholar 

  14. L. H. Cohen, M. Dingus, and H. Meyer,Phys. Rev. Lett. 50, 1058 (1983).

    Google Scholar 

  15. B. A. Wallace and H. Meyer,Phys. Rev. A 5, 953 (1972).

    Google Scholar 

  16. S. S. Leung and R. B. Griffiths,Phys. Rev. A 8, 2670 (1973).

    Google Scholar 

  17. G. R. Brown and H. Meyer,Phys. Rev. A 6, 1578 (1972).

    Google Scholar 

  18. T. Doiron, R. P. Behringer, and H. Meyer,J. Low Temp. Phys. 24, 345 (1976).

    Google Scholar 

  19. C. E. Pittman, T. Doiron, and H. Meyer,Phys. Rev. B 20, 3678 (1979).

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Addison-Wesley, 1959), Chapter VI.

  21. C. Cohen, J. W. H. Sutherland, and J. M. Deutch,Physics and Chemistry of Liquids (Gordon and Breach, New York, 1971), Vol. 2, p. 213.

    Google Scholar 

  22. R. B. Griffiths and J. C. Wheeler,Phys. Rev. A 2, 1047 (1970).

    Google Scholar 

  23. M. A. Anisimov, A. V. Voronel, and E. E. Gorodetskii,Zh. Eksp. Fiz. 60, 1117 (1971);Sov. Phys. JETP 33, 606 (1971); see also M. A. Anisimov,Usp. Fiz. Nauk 114, 249 (1974).

    Google Scholar 

  24. L. P. Philippov,Int. J. Heat Mass Transfer 11, 331 (1968).

    Google Scholar 

  25. M. Giglio and Vendramini,Phys. Rev. Lett. 34, 561 (1975).

    Google Scholar 

  26. R. P. Behringer and H. Meyer,J. Low Temp. Phys. 46, 407, 435 (1982).

    Google Scholar 

  27. E. C. Kerr and R. H. Sherman,J. Low Temp. Phys. 19, 449 (1975).

    Google Scholar 

  28. M. E. Fisher,Rep. Prog. Phys. 30, 731 (1967).

    Google Scholar 

  29. J. V. Sengers and J. M. J. Van Leeuwen,Physica 116A, 345 (1982).

    Google Scholar 

  30. K. Ohbayashi,Jpn. J. Appl. Phys. 13, 1219 (1974).

    Google Scholar 

  31. K. Ohbayashi and A. Ikushima,J. Low Temp. Phys. 19, 449 (1975).

    Google Scholar 

  32. T. Doiron, private communication.

  33. D. W. Oxtoby and G. Gelbart,J. Chem. Phys. 61, 2957 (1974).

    Google Scholar 

  34. R. F. Chang, J. M. H. Levelt Sengers, T. Doiron, and J. Jones, to be published.

  35. L. H. Cohen, M. Dingus, and H. Meyer, to be published.

  36. G. Ahlers, inThe Physics of Liquid and Solid Helium, Part I, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura, YI., Meyer, H. & Ikushima, A. The decay rate of critical fluctuations in3He-4He mixtures near the gas-liquid critical point. J Low Temp Phys 55, 247–271 (1984). https://doi.org/10.1007/BF00683445

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683445

Keywords

Navigation