Advertisement

Journal of Low Temperature Physics

, Volume 74, Issue 3–4, pp 205–213 | Cite as

Fermi surface curvature factor for platinum and palladium

  • A. Khellaf
Article
  • 46 Downloads

Abstract

The curvature factor, C=|∂2 A/∂K H 2 |−1/2, appearing in the expression of the amplitude of the de Haas-van Alphen effect oscillation has been computed for the cubic harmonic description of the Fermi surface. Its values have been determined over a wide range of orientation of the gamma-centered electron sheet and the X-centered hole pocket of the Fermi surface of platinum and palladium. These values, along with those of ∂ 4 A/∂K H 4 , are reported in graphical form, and their uses to measure the spin-splitting factor and to interpret the theoretical de Haas-van Alphen signal amplitude are discussed.

Keywords

Platinum Palladium Magnetic Material Fermi Surface Signal Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Joseph, A. C. Thorsen, and F. A. Blum,Phys. Rev. 140, 2046 (1965).Google Scholar
  2. 2.
    L. R. Windmiller and J. B. Ketterson,Phys. Rev. Lett. 21, 1076 (1968).Google Scholar
  3. 3.
    H. Alles, R. J. Higgins, and D. H. Lowndes,Phys. Rev. B 12, 1304 (1975).Google Scholar
  4. 4.
    G. W. Crabtree, L. R. Windmiller and J. B. Ketterson,J. Low Temp. Phys. 20, 655 (1975).Google Scholar
  5. 5.
    W. Bibby and D. Shoenberg,J. Low Temp. Phys. 34, 659 (1979).Google Scholar
  6. 6.
    D. Shoenberg and J. Vanderkooy,J. Low Temp. Phys. 2, 483 (1970).Google Scholar
  7. 7.
    R. A. Philips and A. V. Gold,Phys. Rev. 178, 932 (1969).Google Scholar
  8. 8.
    B. Knecht,J. Low Temp. Phys. 21, 619 (1975).Google Scholar
  9. 9.
    A. V. Gold and P. W. Schmor,Can. J. Phys. 54, 2445 (1975).Google Scholar
  10. 10.
    L. Nordborg, P. Gustafsson, H. Ohlsen, and S. P. Hornfeldt,Phys. Rev. B 31, 3378 (1985).Google Scholar
  11. 11.
    D. Shoenberg and I. M. Templeton,Physica 69, 293 (1973).Google Scholar
  12. 12.
    W. M. Bibby, P. T. Coleridge, N. S. Cooper, C. M. M. Nex, and D. Shoenberg,J. Low Temp. Phys. 34, 681 (1979).Google Scholar
  13. 13.
    B. Bosacchi, J. B. Ketterson and L. R. Windmiller,Phys. Rev. B 4, 1197 (1971).Google Scholar
  14. 14.
    C. P. Gustafsson and L. Nordborg,Physica 141b, 130 (1986).Google Scholar
  15. 15.
    F. M. Mueller,Phys. Rev. 148, 636 (1966).Google Scholar
  16. 16.
    J. B. Ketterson and L. R. Windmiller,Phys. Rev. B 2, 4813 (1970).Google Scholar
  17. 17.
    L. R. Windmiller, J. B. Ketterson and S. Hornfeldt,Phys. Rev. B 3, 4213 (1971).Google Scholar
  18. 18.
    D. D. Papaconstantopoulos,Handbook of the Band Structure of Elemental Solids (Plenum, New York, 1986).Google Scholar
  19. 19.
    E. I. Zornberg and F. M. Mueller,Phys. Rev. 151, 557 (1966).Google Scholar
  20. 20.
    L. W. Roeland, J. C. Wolfrat, D. K. Mak and M. Springford,J. Phys. F 12, 1267 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. Khellaf
    • 1
  1. 1.Physics DepartmentUniversity of ArizonaTucson

Personalised recommendations