Journal of Low Temperature Physics

, Volume 69, Issue 5–6, pp 419–450 | Cite as

Magnetic field-induced superconductivity in the ferromagnetic state of HoMo6S8

  • M. Giroud
  • J. -L. Genicon
  • R. Tournier
  • C. Geantet
  • O. Peña
  • R. Horyn
  • M. Sergent


The Chevrel-phase HoMo6S8 is one of the few known ferromagnetic reentrant superconductors, having an upper superconductive critical temperatureT c1 =1.78 K, a Curie temperatureT m =0.75 K, and reentering into a normal ferromagnetic state belowT c2 =0.64 K. After a brief survey of the characteristic properties of HoMo6S8, we present new results obtained by simultaneous resistance and magnetization measurements on a single crystal of HoMo6S8, performed in the whole temperature range 35mK≤T≤4.2 K and for several orientations of the easy magnetization axis with respect to the applied magnetic field. Magnetic field-induced superconductive transitions are observed well belowT c2 in the ferromagnetic state. Those transitions can be understood as the first experimental observation of a purely electromagnetic effect earlier suggested by Ginzburg: if the internal field is antiparallel to the spontaneous magnetization, the magnetic induction may be reduced below its critical value and a superconductive transition may take place. It is possible if exchange interactions are negligible; our results concerning the anisotropy of the internal upper critical fieldH c2 are consistent with that requirement. We also discuss the possible origins for the low-resistance state in zero field: it might be due to domain wall superconductivity.


Magnetic Field Anisotropy Domain Wall Exchange Interaction Magnetic Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Ginzburg,Sov. Phys. JETP 4, 153 (1957).Google Scholar
  2. 2.
    A. A. Abrikosov and L. P. Gorkov,Sov. Phys. JETP 12, 1243 (1961).Google Scholar
  3. 3.
    P. W. Anderson and H. Suhl,Phys. Rev. Lett. 4, 898 (1959).Google Scholar
  4. 4.
    U. Krey,Int. J. Magn. 3, 65 (1972).Google Scholar
  5. 5.
    B. T. Matthias and H. Suhl,Phys. Rev. 116, 51 (1960).Google Scholar
  6. 6.
    M. Ishikawa and Ø. Fischer,Solid State Commun. 23, 37 (1977).Google Scholar
  7. 7.
    W. A. Fertig, D. C. Johnston, L. E. Delong, R. W. McCallum, M. B. Maple, and B. T. Matthias,Phys. Rev. Lett. 38, 987 (1977).Google Scholar
  8. 8.
    M. Tachiki, H. Matsumoto, and H. Umezawa,Phys. Rev. B 20, 1915 (1979).Google Scholar
  9. 9.
    K. E. Gray,Phys. Rev. B 27, 4157 (1983).Google Scholar
  10. 10.
    L. N. Bulaevski, A. I. Buzdin, M. L. Kulic, and S. V. Panjukov,Adv. Phys. 34, 175–261 (1985).Google Scholar
  11. 11.
    O. Sakai, M. Suzuki, S. Maekawa, M. Tachiki, G. W. Crabtree, and F. Berhoozi,J. Phys. Soc. Japan 52, 1341 (1983).Google Scholar
  12. 12.
    L. N. Bulaevski and S. V. Panjukov,J. Low Temp. Phys. 52, 137 (1983).Google Scholar
  13. 13.
    M. Tachiki,Physica 109–110B, 1699 (1982).Google Scholar
  14. 14.
    A. I. Buzdin, L. N. Bulaevski, and S. V. Panjukov,Sov. Phys. JETP 60, 174 (1984).Google Scholar
  15. 15.
    M. Tachiki, A. Kotani, H. Matsumoto, and H. Umezawa,Solid State Commun. 32, 599 (1979).Google Scholar
  16. 16.
    J. Kasperczyk, G. Koslowski, and P. Tekiel,Solid State Commun. 44, 663 (1982).Google Scholar
  17. 17.
    G. W. Crabtree, F. Berhoozi, S. A. Campbell, and D. G. Hinks,Phys. Rev. Lett. 49, 1342 (1982).Google Scholar
  18. 18.
    F. Berhoozi, G. W. Crabtree, S. A. Campbell, and D. G. Hinks,Phys. Rev. B 27, 6849 (1983).Google Scholar
  19. 19.
    J. L. Genicon, J. P. Modondanon, R. Tournier, E. D. Dahlberg, and D. G. Hinks,J. Mag. Mag. Mat. 54–57, 1545 (1986).Google Scholar
  20. 20.
    F. Holtzberg, S. J. La Placa, T. R. McGuire, and A. Webb,J. Appl. Phys. 55, 2013 (1984).Google Scholar
  21. 21.
    O. Peña, R. Horyn, M. Potel, J. Padiou, and M. Sergent,J. Less Comm. Met. 105, 105 (1985).Google Scholar
  22. 22.
    J. L. Genicon, J. P. Modondanon, R. Tournier, O. Pena, R. Horyn, and M. Sergent,J. Phys. Lett. (Paris)45, 1175 (1984).Google Scholar
  23. 23.
    J. Rossant-Mignod, P. Burlet, S. Quézel, A. Benoit, J. Flouquet, R. Horyn, O. Peña, and M. Sergent,J. Phys. Lett. (Paris)46, 373 (1985).Google Scholar
  24. 24.
    J. W. Lynn, G. Shirane, W. Thomlinson, R. H. Shelton, and D. E. Moncton,Phys. Rev. B 24, 3817 (1981).Google Scholar
  25. 25.
    M. Ishikawa, Ø. Fischer, and J. Müller,J. Phys. (Paris)39, C6–1379 (1978).Google Scholar
  26. 26.
    J. L. Genicon, B. Laaboudi, R. Tournier, R. Chevrel, and M. Sergent,J. Phys. (Paris)45, 1079 (1984).Google Scholar
  27. 27.
    J. L. Genicon, J. P. Modondanon, R. Tournier, R. Chaudouet, and R. Fruchart,J. Appl. Phys. 57, 3194 (1985).Google Scholar
  28. 28.
    V. Jaccarino and M. Peter,Phys. Rev. Lett. 9, 290 (1962).Google Scholar
  29. 29.
    P. Burlet, A. Dinia, W. A. C. Erkelens, J. L. Genicon, S. Quézel, J. Rossat-Mignod, O. Peña, R. Horyn, and M. Sergent, to be published.Google Scholar
  30. 30.
    B. Dreyfus, Y. Ishikawa, R. Tournier, and L. Weil, inProceedings of the 9th International Conference in Low Temperature Physics (Columbus, 1965), Part B, p. 1026.Google Scholar
  31. 31.
    H. Van Kempen, A. R. Miedema, and W. J. Huiskamp,Physica 30, 229 (1964); O. V. Lounasmaa, inHyperfine Interactions, A. J. Freeman and R. B. Frankel, eds. (Academic Press, New York, 1967), p. 489.Google Scholar
  32. 32.
    Y. Koike, T. Fukase, N. Kobayashi, S. Hosoya, and H. Takei,Solid State Commun. 60, 771 (1986).Google Scholar
  33. 33.
    M. Decroux and Ø. Fischer, insuperconductivity in Ternary Compounds, Vol. II, B. Maple and Ø. Fischer, eds. (Springer Verlag, 1982), pp. 57ff.Google Scholar
  34. 34.
    T. Jarlborg and A. J. Freeman, inSuperconductivity in Ternary Compounds, Vol. II, B. Maple and Ø. Fischer, eds. (Springer Verlag, 1982), p. 167.Google Scholar
  35. 35.
    M. Ishikawa, Ø. Fischer, and J. Müller, inSuperconductivity in Ternary Compounds, Vol. II, B. Maple and Ø. Fischer, eds. (Springer Verlag, 1982), pp. 143ff.Google Scholar
  36. 36.
    H. Iwasaki and Y. Muto,Phys. Rev. B 33, 4680 (1986).Google Scholar
  37. 37.
    A. J. Freeman and T. Jarlborg,Phys. Rev. Lett. 44, 178 (1980).Google Scholar
  38. 38.
    L. N. Bulaevski, A. I. Buzdin, and M. Kulic,Phys. Rev. B 34, 4928 (1986).Google Scholar
  39. 39.
    T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley,Phys. Rev. B 19, 4558 (1979).Google Scholar
  40. 40.
    R. W. McCallum, L. D. Woolf, R. N. Shelton, and M. B. Maple,J. Phys. (Paris)39, C6–359 (1978).Google Scholar
  41. 46.
    B. B. Goodman,IBM J. Res. Dev. 6, 63 (1963).Google Scholar
  42. 42.
    G. Sarma,J. Chem. Phys. Solids 24, 1029 (1963).Google Scholar
  43. 43.
    P. Fulde and R. A. Ferrell,Phys. Rev. 135, 550 (1964).Google Scholar
  44. 44.
    L. N. Bulaevski, A. I. Buzdin, and S. V. Panjukov, Private communication.Google Scholar
  45. 45.
    I. A. Privorotski,Sov. Phys. Usp. 15, 555 (1973).Google Scholar
  46. 46.
    M. Gabay and T. Garel,J. Phys. Lett. (Paris)46, 5 (1985).Google Scholar
  47. 47.
    H. W. Meul, C. Rossel, M. Decroux, Ø. Fischer, G. Remenyi, and A. Briggs,Phys. Rev. Lett. 53, 497 (1984).Google Scholar
  48. 48.
    G. Deutscher,Physica 109–110B, 1629 (1982).Google Scholar
  49. 49.
    P. Przylupski, U. Poppe, K. Fischer, and C. Buchal,Z. Phys. B 59, 407 (1985).Google Scholar
  50. 50.
    L. N. Bulaevski, A. I. Buzdin, and M. L. Kulic,Solid State Commun. 56, 351 (1985).Google Scholar
  51. 51.
    J. Maps, D. D. Berkley, J. M. Kang, and A. M. Goldman,Phys. Rev. B 35, 38 (1987).Google Scholar
  52. 52.
    S. Takahashi and M. Tachiki,Solid State Commun. 48, 9 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • M. Giroud
    • 1
  • J. -L. Genicon
    • 1
  • R. Tournier
    • 1
  • C. Geantet
    • 2
  • O. Peña
    • 2
  • R. Horyn
    • 2
  • M. Sergent
    • 2
  1. 1.Centre de Recherches sur les Très Basses Températures, CNRSGrenobleFrance
  2. 2.Laboratoire de Chimie MinéraleUniversité de Rennes IRennesFrance

Personalised recommendations