Skip to main content
Log in

Superconductivity effects near the metal-insulator transition in granular indium films

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The paper reports on an investigation of the electric resistance as a function of temperatureT, magnetic fieldH, and applied voltageV in granular indium films when approaching the metal-insulator transition (MIT) due to increased thickness of the oxide layers between granules. The dependences are shown to be governed atT≤5 K by competition of the hopping conductivity and the Josephson tunneling of electrons, sometimes giving rise to a resistance minimum inR(T) associated with superconductivity. It was also found that even when the intergranular Josephson tunneling is totally suppressed, transition of granules to the superconducting state influences essentially the dependencesR(T, H), changing the functional form ofR(T) and resulting in anomalously high negative magnetoresistance. This is shown to stem from the change of the character of activated electron tunneling as the granules become superconducting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. Mott and E. A. Davies,Electron Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979).

    Google Scholar 

  2. B. I. Shklovskii and A. L. Efros,Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979) (in Russian).

    Google Scholar 

  3. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan,Phys. Rev. Lett. 42, 673 (1979).

    Google Scholar 

  4. P. Sheng, B. Abeles, M. D. Coutts, and Y. Arie,Adv. Phys. 24, 408 (1975).

    Google Scholar 

  5. Yu. G. Morozov, I. G. Naumenko, and V. I. Petinov,Fiz. Nizk. Temp. 2, 987 (1976).

    Google Scholar 

  6. R. S. Dynes, J. P. Garno, and J. M. Rowell,Phys. Rev. Lett. 40, 479 (1978).

    Google Scholar 

  7. E. Simanek,Solid State Commun. 31, 419 (1979).

    Google Scholar 

  8. K. B. Efetov,Zh. Eksp. Teor. Fiz. 78, 2017 (1980).

    Google Scholar 

  9. A. F. Hebard and J. M. Vandenberg,Phys. Rev. Lett. 44, 50 (1980).

    Google Scholar 

  10. C. J. Adkins, J. M. D. Thomas, and M. W. Young,J. Phys. C 13, 3427 (1980).

    Google Scholar 

  11. R. C. Dynes and J. P. Garno,Phys. Rev. Lett. 46, 137 (1981).

    Google Scholar 

  12. T. Chui, G. Deutscher, P. Lindenfeld, and W. L. McLean,Phys. Rev. B 23, 6172 (1981).

    Google Scholar 

  13. A. G. Aronov, M. E. Gershenzon, and Yu. E. Zhuravlev,Zh. Eksp. Teor. Fiz. 87, 971 (1984).

    Google Scholar 

  14. H. K. Sin, P. Lindenfeld, and W. L. McLean,Phys. Rev. B 30, 4067 (1984).

    Google Scholar 

  15. Y. Imry and M. Strongin,Phys. Rev. B 24, 6353 (1981).

    Google Scholar 

  16. G. Deutscher, A. M. Goldman, and H. Micklitz,Phys. Rev. B 31, 1679 (1985).

    Google Scholar 

  17. B. I. Belevtsev and A. V. Fomin,Fiz. Nizk. Temp. 10, 811 (1984) [Sov. J. Low Temp. Phys. 10, 423 (1984)].

    Google Scholar 

  18. B. I. Belevtsev and A. V. Fomin,Fiz. Tverd. Tela 27, 976 (1985) [Sov. Phys. Solid State 27, 594 (1985)].

    Google Scholar 

  19. B. L. Altshuler and A. G. Aronov, inModern Problems in Condensed Matter (North-Holland, Amsterdam, 1985).

    Google Scholar 

  20. B. I. Belevtsev and A. V. Fomin, InCryogenics Systems: Developments and Investigations (Naukova Dumka, Kiev, 1984) (in Russian).

    Google Scholar 

  21. B. I. Belevtsev, Yu. F. Komnik, and A. V. Fomin,Fiz. Nizk. Temp. 11, 1143 (1985) [Sov. J. Low Temp. Phys. 11, 629 (1985)].

    Google Scholar 

  22. B. I. Belvtsev, V. I. Pilipenko, and L. A. Yazuk,Fiz. Nizk. Temp. 7, 1010 (1981) [Sov. J. Low Temp. Phys. 7, 490 (1981)].

    Google Scholar 

  23. C. J. Adkins,J. Phys. C 15, 7143 (1982).

    Google Scholar 

  24. C. J. Adkins, J. D. Benjamin, J. M. D. Thomas, J. W. Gardner, and A. J. McGeown,J. Phys. C 17, 4633 (1984).

    Google Scholar 

  25. P. Sheng and J. Klafter,Phys. Rev. B 27, 2583 (1983).

    Google Scholar 

  26. O. Entin-Wohlman, Y. Gefen, and Y. Shapira,J. Phys. C 16, 1161 (1983).

    Google Scholar 

  27. B. I. Shklovskii,Fiz. Tverd. Tela 26, 585 (1984).

    Google Scholar 

  28. M. Mostefa and G. J. Olivier,J. Phys. C 18, 93 (1985).

    Google Scholar 

  29. O. Entin-Wohlman, A. Kapitulnik, and Y. Shapira,Phys. Rev. B 24, 6464 (1981).

    Google Scholar 

  30. A. M. Glukhov, I. M. Dmitrenko, and A. A. Shablo,Fiz. Nizk. Temp. 9, 29 (1983).

    Google Scholar 

  31. S. Kobayashi, Y. Tada, and W. Sasaki,Physica B 107, 129 (1981).

    Google Scholar 

  32. S. Maekawa, H. Fukuyama, and S. Kobayashi,Solid State Commun. 37, 45 (1980).

    Google Scholar 

  33. E. Simanek,Phys. Lett. 101A, 161 (1984).

    Google Scholar 

  34. J. V. José,Phys. Rev. B 29, 2836 (1984).

    Google Scholar 

  35. E. Simanek,Phys. Rev. B 25, 237 (1982).

    Google Scholar 

  36. P. Fasekas, B. Mühlsehlegel, and M. Z. Schrötter,Z. Phys. B 57, 193 (1984).

    Google Scholar 

  37. J. M. Kosterlitz and J. Thouless,J. Phys. C 6, 1181 (1973).

    Google Scholar 

  38. H. B. Zeller and I. Giaver,Phys. Rev. 181, 789 (1969).

    Google Scholar 

  39. N. V. Zavaritskii,Zh. Eksp. Teor. Fiz. 57, 752 (1969).

    Google Scholar 

  40. P. G. De Gennes,Superconductivity in Metals and Alloys (Benjamin, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belevtsev, B.I., Komnik, Y.F. & Fomin, A.V. Superconductivity effects near the metal-insulator transition in granular indium films. J Low Temp Phys 69, 401–417 (1987). https://doi.org/10.1007/BF00683330

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683330

Keywords

Navigation