Journal of Low Temperature Physics

, Volume 78, Issue 5–6, pp 375–386 | Cite as

The upper critical field of thin superconducting films with large resistance

  • A. A. Golubov
  • V. V. Dorin


The influence of the electron-electron interaction on the upper critical fieldHc2 of thin superconducting films with large resistance and of layered superconductors is investigated theoretically. The orbital effect only is taken into account. It is shown that the electron-electron interaction in the diffusion and Cooper channels influencesHc2 in different manners. The interaction in the diffusion channel (dynamically screened Coulomb interaction) leads to essential deviations from the standard BCS dirty limitHc2(T) curve at low temperatures and as a result upward curvature inHc2(T) is possible. The interaction in the Cooper channel is significant only at temperaturesTc−T≪Tc and enlarges the slopedHc2(T)/dt atT=Tc.


Magnetic Material Coulomb Interaction Essential Deviation Critical Field Layered Superconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. L. Altshuler and A. G. Aronov, inElectron-Electron Interaction in Disordered Conductors, A. L. Efros and M. Pollak, eds. (Elsevier, New York, 1985), pp. 1.Google Scholar
  2. 2.
    P. W. Anderson,J. Phys. Chem. Solids 11, 26 (1959).Google Scholar
  3. 3.
    Yu. N. Ovchinnikov,Zh. Eksp. Teor. Fiz. 64, 719 (1973) [Sov. Phys.-JETP 37, 366 (1974)].Google Scholar
  4. 4.
    U. Eckern and F. Pelzer,J. Low Temp. Phys. 73, 433 (1988).Google Scholar
  5. 5.
    A. M. Finkel'stein,Z. Phys. B 56, 189 (1984);Pis'ma Zh. Eksp. Teor. Fiz. 45, 37 (1987) [JETP Lett. 45, 46 (1987)].Google Scholar
  6. 6.
    J. M. Graybeal and M. R. Beasley,Phys. Rev. B 29, 4167 (1984).Google Scholar
  7. 7.
    R. C. Dynes, A. E. White, J. M. Graybeal, and J. P. Carno,Phys. Rev. Lett. 57, 2195 (1986).Google Scholar
  8. 8.
    J. M. Graybeal, P. M. Mankiewich, R. C. Dynes, and M. R. Beasley,Phys. Rev. Lett. 59, 2697 (1987).Google Scholar
  9. 9.
    S. Kobayashi, S. Okuma, F. Komori, and W. Sasaki,J. Phys. Soc. Jpn. 52, 20 (1983).Google Scholar
  10. 10.
    A. F. Hebard and M. A. Paalanen,Phys. Rev. B 30, 4063 (1984).Google Scholar
  11. 11.
    M. Ikebe, K. Katagiri, and Y. Muto,Physica 107B, 943 (1981).Google Scholar
  12. 12.
    R. V. Koleman, G. K. Eiserman, S. J. Hillenius, A. T. Mitchell, and J L. Vicent,Phys. Rev. B 27, 125 (1983).Google Scholar
  13. 13.
    P. G. de Gennes,Superconductivity of Metals and Alloys, (Benjamin, New York, 1966).Google Scholar
  14. 14.
    S. Maekava, H. Ebisawa, and H. Fukuyama,J. Phys. Soc. Jpn. 52, 1352 (1983).Google Scholar
  15. 15.
    G. Kotliyar and A. Kapitulnik,Phys. Rev. B 33, 3146 (1986).Google Scholar
  16. 16.
    L. Coffey, K. A. Muttalib, and K. Levin,Phys. Rev. Lett. 52, 789 (1984).Google Scholar
  17. 17.
    A. A. Varlamov and V. V. Dorin,Zh. Eksp. Teor. Az. 91, 1955 (1986).Google Scholar
  18. 18.
    A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinsky,Methods of Quantum Field Theory in Statistical Physics, (Moscow, 1962).Google Scholar
  19. 19.
    L. G. Aslamasov and A. I. Larkin,Phys. Lett. 26A, 238 (1968).Google Scholar
  20. 20.
    A. M. Finkel'stein, inAnderson Localization, T. Ando and H. Fukuyama eds. (Springer, New York, 1988), p. 230.Google Scholar
  21. 21.
    R. A. Klemm, A. Luther, and M. R. Beasley,Phys. Rev. B 12, 877 (1975).Google Scholar
  22. 22.
    M. Strongin, R. S. Thompson, O. F. Kammerer, and J. E. Crow,Phys. Rev. B 1, 1078 (1970).Google Scholar
  23. 23.
    A. Schmid,Z. Phys. 231, 324 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. A. Golubov
    • 1
  • V. V. Dorin
    • 1
  1. 1.Institute of Solid State PhysicsAcademy of Scences of the USSRMoscowUSSR

Personalised recommendations