Journal of Low Temperature Physics

, Volume 54, Issue 3–4, pp 267–275 | Cite as

Investigation of the hexagonal NbGe2 phase

  • M. Kloska
  • E. L. Haase


NbGe2 thin films and hot pressed powder samples were made over a wide range of preparation conditions. Resistive and inductiveTc values, residual resistance ratios, specific resistances, and grain sizes were determined as a function of the substrate temperature during evaporation. C40-NbGe2 thin films have a maximum resistiveTc of 2.18 K and an inductiveTc of 2.10 K. The maximum residual resistance ratio was 17.7, the lowest specific resistance at room temperature was 57 µΩ-cm. During formation at higher temperatures or under pressure NbGe2 has an affinity for carbon and nitrogen, leading to the formation of niobium carbonitrides with aTc up to 16.2 K. PublishedTc values up to 16 K for NbGe2 are probably due to a contamination with niobium carbonitride.


Nitrogen Grain Size Thin Film Evaporation Hexagonal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Ghosh and D. H. Douglass,Phys. Rev. Lett. 37, 32 (1976); A. K. Ghosh and D. H. Douglass, inSuperconductivity in d- and f-Band Metals, Second Rochester Conference, D. H. Douglass, ed. (1976), p. 59.Google Scholar
  2. 2.
    C. M. Knoedler and D. H. Douglass,J. Low Temp. Phys. 37, 189 (1979).Google Scholar
  3. 3.
    J. J. Hanak, J. I. Gittleman, J. P. Pellicane, and S. Bozowski,J. Appl. Phys. 41, 4958 (1970).Google Scholar
  4. 4.
    G. F. Hardy and J. K. Hulm,Phys. Rev. 93, 1004 (1954).Google Scholar
  5. 5.
    J. P. Remeika, A. S. Cooper, Z. Fisk, and D. C. Johnston,J. Less Common Met. 62, 211 (1978).Google Scholar
  6. 6.
    M. Kloska, Diploma thesis, University of Karlsruhe (1982).Google Scholar
  7. 7.
    O. Meyer, H. Mann, and E. Phrilingos, inApplication of Ion Beams to Metals, S. T. Picrauxet al., eds. (Plenum Press, New York, 1974), p. 15; D. Dew-Hughes and R. Jones,Appl. Phys. Lett. 36, 856 (1980).Google Scholar
  8. 8.
    S. A. Wolf, Naval Research Laboratories, Washington, D.C., private communication.Google Scholar
  9. 9.
    M. Kloska and E. L. Haase, submitted toJ. Less Common Met.Google Scholar
  10. 10.
    P. Scherrer,Göttinger Nachrichten Math. Phys. 98 (1918).Google Scholar
  11. 11.
    W. Stocker, Zulassungsarbeit, University of Karlsruhe (1980).Google Scholar
  12. 12.
    J. Geerk and K. G. Langguth,Solid State Commun. 23, 83 (1977).Google Scholar
  13. 13.
    J. L. Jorda, R. Flükiger, and J. Müller,J. Less Common Met. 62, 25 (1978).Google Scholar
  14. 14.
    U. Schneider and J. Geerk, KfK-Report 3051, 142 (1980); E. L. Haase and O. Meyer,IEEE Trans. Magn. MAG-17, 541 (1981).Google Scholar
  15. 15.
    R. Kubiak, R. Horyń, H. Broda, and K. Lukaszewicz,Bull. Acad. Polon. Sci. Ser. Sci. Chim. 20, 429 (1972).Google Scholar
  16. 16.
    J. H. Carpenter and A. W. Searcy,J. Am. Chem. Soc. 78, 2079 (1956).Google Scholar
  17. 17.
    W. B. Pearson,A Handbook of Lattice Spacings and Structures of Metals and Alloys, G. V. Raynor, ed., Vol. 2 (Pergamon Press, Oxford, 1967), p. 1369.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • M. Kloska
    • 1
  • E. L. Haase
    • 1
  1. 1.Kernforschungszentrum Karlsruhe GmbHInstitut für Nukleare FestkörperphysikKarlsruheFederal Republic of Germany

Personalised recommendations