Skip to main content
Log in

Simulation and optimization of a dc SQUID with finite capacitance

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This paper deals with the calculations of the noise and the optimization of the energy resolution of a dc SQUID with finite junction capacitance. Up to now noise calculations of dc SQUIDs were performed using a model without parasitic capacitances across the Josephson junctions. As the capacitances limit the performance of the SQUID, for a good optimization one must take them into account. The model consists of two coupled nonlinear second-order differential equations. The equations are very suitable for simulation with an analog circuit. We implemented the model on a hybrid computer. The noise spectrum from the model is calculated with a fast Fourier transform. A calculation of the energy resolution for one set of parameters takes about 6 min of computer time. Detailed results of the optimization are given for products of inductance and temperature ofLT=1.2 and 5 nH K. Within a range of β and β c between 1 and 2, which is optimum, the energy resolution is nearly independent of these variables. In this region the energy resolution is near the value calculated without parasitic capacitances. Results of the optimized energy resolution are given as a function ofLT between 1.2 and 10 mH K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Clarke, W. M. Goubau, and M. B. Ketchen,J. Low Temp. Phys. 25, 99 (1976).

    Google Scholar 

  2. M. W. Cromar and P. Carelli,Appl. Phys. Lett. 28, 723 (1981).

    Google Scholar 

  3. M. B. Ketchen and J. M. Jaycox,Appl. Phys. Lett. 40, 736 (1982).

    Google Scholar 

  4. V. J. de Waal, T. M. Klapwijk, and P. van den Hamer,Appl. Phys. Lett. 42, 389 (1983).

    Google Scholar 

  5. W. C. Stewart,Appl. Phys. Lett. 12, 277 (1968).

    Google Scholar 

  6. D. E. McCumber,J. Appl. Phys. 39, 3113 (1968).

    Google Scholar 

  7. M. Tinkham,Introduction to Superconductivity (McGraw-Hill, 1975), p. 214.

  8. C. D. Tesche and J. Clarke,J. Low Temp. Phys. 29, 301 (1977).

    Google Scholar 

  9. J. J. P. Bruines, V. J. de Waal, and J. E. Mooij,J. Low Temp. Phys. 46, 383 (1982).

    Google Scholar 

  10. S. M. Faris and E. A. Valsamakis,J. Appl. Phys. 52, 915 (1981).

    Google Scholar 

  11. D. B. Sullivan and J. E. Zimmerman,Am. J. Phys. 39, 1504 (1971).

    Google Scholar 

  12. G. I. Rochlin and P. K. Hansma,Am. J. Phys. 41, 878 (1973).

    Google Scholar 

  13. N. R. Werthamer and S. Shapiro,Phys. Rev. 164, 523 (1967).

    Google Scholar 

  14. C. A. Hamilton,Rev. Bci. Instrum. 43, 445 (1972).

    Google Scholar 

  15. C. K. Bak and N. F. Pedersen,Appl. Phys. Lett. 22, 149 (1973).

    Google Scholar 

  16. C. K. Bak,Rev. Phys. Appl. 9, 15 (1974).

    Google Scholar 

  17. J. C. Taunton and M. R. Halse,J. Phys. E 10, 505 (1977).

    Google Scholar 

  18. J. H. Magerlein,Rev. Sci. Instrum. 49, 486 (1978).

    Google Scholar 

  19. A. Yagi and I. Kurosawa,Rev. Sci. Instrum. 51, 14 (1980).

    Google Scholar 

  20. R. W. Henry, D. E. Prober, and A. Davidson,Am. J. Phys. 49, 1035 (1981).

    Google Scholar 

  21. D. E. Prober, S. E. G. Slusky, R. W. Henry, and L. D. Jackel,J. Appl. Phys. 52, 4145 (1981).

    Google Scholar 

  22. J. E. Zimmerman and D. B. Sullivan,Appl. Phys. Lett. 31, 360 (1977).

    Google Scholar 

  23. D. B. Tuckerman,Rev. Sci. Instrum. 49, 835 (1978).

    Google Scholar 

  24. R. W. Henry and D. E. Prober,Rev. Sci. Instrum. 52, 902 (1981).

    Google Scholar 

  25. B. D. Josephson,Phys. Lett. 1, 251 (1962).

    Google Scholar 

  26. B. D. Josephson,Rev. Mod. Phys. 36, 216 (1964).

    Google Scholar 

  27. B. D. Josephson,Adv. Phys. 14, 419 (1965).

    Google Scholar 

  28. J. E. Zimmerman and A. H. Silver,Phys. Rev. 141, 867 (1966).

    Google Scholar 

  29. V. Radhakrishnan and V. L. Newhouse,J. Appl. Phys. 42, 129 (1971).

    Google Scholar 

  30. J. Claassen,J. Appl. Phys. 46, 2268 (1975).

    Google Scholar 

  31. V. Ambegaokar and A. Baratoff,Phys. Rev. Lett. 10, 486 (1963); Erratum,Phys. Rev. Lett. 11, 104 (1963).

    Google Scholar 

  32. G. A. Bekey and W. J. Karplus,Hybrid Computation (Wiley, New York, 1968).

    Google Scholar 

  33. M. Feilmeier,Hybridrechnen (Birkhäuser Verlag, Basel, 1974).

    Google Scholar 

  34. R. F. Voss,J. Low Temp. Phys. 42, 151 (1981).

    Google Scholar 

  35. V. J. de Waal, P. van den Hamer, and T. M. Klapwijk,Appl. Phys. Lett. 42, 389 (1983).

    Google Scholar 

  36. M. B. Ketchen, W. M. Goubau, J. Clarke, and G. B. Donaldson,J. Appl. Phys. 49, 4111 (1978).

    Google Scholar 

  37. V. J. de Waal and T. M. Klapwijk,Appl. Phys. Lett. 41, 669 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Financial support provided by the Stitchting voor Fundamenteel Onderzoek der Materie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Waal, V.J., Schrijner, P. & Llurba, R. Simulation and optimization of a dc SQUID with finite capacitance. J Low Temp Phys 54, 215–232 (1984). https://doi.org/10.1007/BF00683275

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683275

Keywords

Navigation