Skip to main content
Log in

Theoretical investigation of Josephson tunnel junctions with spatially inhomogeneous superconducting electrodes

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The microscopic theory of the Josephson effect in tunnel structures with electrodes having spatially inhomogeneous superconducting properties is formulated. Two mechanisms of inhomogeneity are considered. The first is associated with the presence of a thin transition normal layer located near the tunnel barrier, which is relevant for junctions based on refractory superconductors. The second case is the trapping of Abrikosov vortices by junction electrodes. The tunnel current components are calculated numerically in the whole temperature range 0<T<T c and magnetic field range 0<H<H c2. It is shown that the tunnel current is extremely sensitive to the type of smearing of the singularities of the classical tunnel theory ateV=2Δ. The results allow experimental determination of the characteristics of real tunnel junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Keith and J. D. Leslie,Phys. Rev. B 18, 4739 (1978).

    Google Scholar 

  2. P. Seidel and I. Richter,Phys. Stat. Sol. 98, 189 (1980).

    Google Scholar 

  3. P. Seidel and I. Richter,Phys. Stat. Sol. 99, 607 (1980).

    Google Scholar 

  4. R. F. Broom, S. I. Raider, and A. Oosenbrug,IEEE Trans. Electron. Dev. ED-27, 1998 (1980).

    Google Scholar 

  5. K.-H. Berthel, H.-J. Köhler, P. Seidel, K. Blüthner, and P. Weber,Fiz. Nizk. Temp. 7, 156 (1981).

    Google Scholar 

  6. N. Mori and M. Kadama,Jpn. J. Appl. Phys. 20, 639 (1981).

    Google Scholar 

  7. H.-J. Köhler and P. Seidel,Phys. Stat. Sol. 67A, 497 (1981).

    Google Scholar 

  8. H.-G. Meyer and P. Seidel,Phys. Stat. Sol. 103, 281 (1981).

    Google Scholar 

  9. G. Albrecht, I. Richter, and H. Veber,J. Low Temp. Phys. 48, 61 (1982).

    Google Scholar 

  10. N. R. Werthamer,Phys. Rev. 147, 255 (1966).

    Google Scholar 

  11. A. I. Larkin and Yu. N. Ovchinnikov,Zh. Eksp. Teor. Fiz. 51, 1535 (1966) [Sov. Phys. JETP 24, 1035 (1967)].

    Google Scholar 

  12. T. A. Fulton, A. F. Hebard, L. N. Dunkleberger, and R. H. Eick,Solid State Commun. 22, 493 (1977).

    Google Scholar 

  13. N. Ishida, K. Enpuki, K. Yoshida, and F. Irie,J. Appl. Phys. 54, 5287 (1983);56, 2558 (1984).

    Google Scholar 

  14. M. A. Washington and T. A. Fulton,Appl. Phys. Lett. 40, 848 (1982).

    Google Scholar 

  15. M. Wada, J. Nakano, and M. Yanagava,J. Vac. Sci. Technol. A 3, 383 (1985).

    Google Scholar 

  16. A. B. Zorin, I. O. Kulik, K. K. Likharev, and J. R. Schrieffer,Fiz. Nizk. Temp. 10, 1138 (1979).

    Google Scholar 

  17. Y. Hasumi and T. Wado,J. Appl. Phys. 59, 540 (1986).

    Google Scholar 

  18. E. L. Wolf,Physica BC 109/110, 1722 (1982).

    Google Scholar 

  19. A. I. Braginski, J. Talvacchio, M. A. Janocko, and J. R. Gavaler,J. Appl. Phys. 60, 2058 (1986).

    Google Scholar 

  20. M. E. Gershenson, V. N. Gubanov, and M. I. Falei,Zh. Eksp. Teor. Fiz. 90, 2196 (1986).

    Google Scholar 

  21. V. Z. Kresin,Phys. Rev. B 28, 1294 (1983).

    Google Scholar 

  22. W. L. McMillan,Phys. Rev. 175, 537 (1968).

    Google Scholar 

  23. A. A. Golubov, M. Yu. Kupriyanov, and V. F. Lukichev,Sov. J. Microelectronics 12, 342 (1983).

    Google Scholar 

  24. S. Mohabir and A. D. S. Nagi,J. Low Temp. Phys. 35, 671 (1979).

    Google Scholar 

  25. A. V. Svidzinskii,Problems of Spatial Inhomogeneity in the Theory of Superconductivity (Nauka, Moscow, 1982).

    Google Scholar 

  26. N. L. Rowell and H. I. Smith,Can. J. Phys. 54, 223 (1976).

    Google Scholar 

  27. P. G. DeGennes,Rev. Mod. Phys. 36, 225 (1964).

    Google Scholar 

  28. Z. G. Ivanov, M. Yu. Kupriyanov, K. K. Likharev,et al., Fiz. Nizk. Temp. 7, 560 (1981).

    Google Scholar 

  29. G. B. Arnold,Phys. Rev. B 18, 1076 (1978).

    Google Scholar 

  30. G. B. Arnold,J. Low Temp. Phys. 59, 140 (1985).

    Google Scholar 

  31. A. D. Zaikin and G. F. Zharov,Zh. Eksp. Teor. Fiz. 78, 721 (1980);81, 1782 (1981).

    Google Scholar 

  32. A. A. Golubov and M. Yu. Kupriyanov,Fiz. Nizk. Temp. 12, 373 (1986); inSQUID'85, H.-D. Hahlbohm and H. Lübbig, eds. (de Gruyter, Berlin, 1986), p. 95.

    Google Scholar 

  33. S. L. Miller, K. R. Biagi, J. R. Clemm, and D. K. Finnemore,Phys. Rev. B 31, 2684 (1985).

    Google Scholar 

  34. K. Usadel,Phys. Rev. Lett. 25, 560 (1970).

    Google Scholar 

  35. A. A. Golubov, M. Yu. Kupriyanov, V. F. Lukichev, and A. A. Orlikovsky,Sov. J. Microelectronics 12, 355 (1983); inSQUID'85, H.-D. Hahlbohm and H. Lübbig, eds. (de Gruyter, Berlin, 1986), p. 49.

    Google Scholar 

  36. A. I. D'yachenko,Fiz. Nizk. Temp. 5, 440 (1979).

    Google Scholar 

  37. D. Ihle,Phys. Stat. Sol. (b)47, 423 (1977).

    Google Scholar 

  38. D. Saint-James, G. Sarma, and E. J. Thomas,Tyoe II Superconductivity (Pergamon Press, 1969).

  39. M. Yu. Kupriyanov and K. K. Likharev,Zh. Eksp. Teor. Fiz. 68, 1506 (1975).

    Google Scholar 

  40. A. A. Abrikosov,Zh. Eksp. Teor. Fiz. 32, 1442 (1957).

    Google Scholar 

  41. R. Watts-Tobin, L. Kramer, and W. Pesch,J. Low Temp. Phys. 17, 71 (1974).

    Google Scholar 

  42. V. Ambegaokar and A. Baratoff,Phys. Rev. Lett. 10, 486 (1963).

    Google Scholar 

  43. D. N. Langenberg,Rev. Phys. Appl. 9, 35 (1974).

    Google Scholar 

  44. U. K. Paulsen,Rev. Phys. Appl. 9, 41 (1974).

    Google Scholar 

  45. R. E. Harris,Phys. Rev. B 10, 84 (1974).

    Google Scholar 

  46. V. M. Svistunov, Yu. F. Revenko, D. P. Moiseev, V. M. Postnikov, and A. P. Gaevskis,Fiz. Nizk. Temp. 11, 1133 (1985).

    Google Scholar 

  47. J. R. Schrieffer and J. W. Wilkins,Phys. Rev. Lett. 10, 17 (1963).

    Google Scholar 

  48. P. G. De Gennes,Superconductivity of Metals and Alloys (New York, 1966).

  49. V. L. Berezinskii,Zh. Eksp. Teor. Fiz. 61, 1144 (1971) [Sov. Phys. JETP 34, 610 (1972)].

    Google Scholar 

  50. J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6, 1181 (1973).

    Google Scholar 

  51. M. R. Beasley, J. E. Mooij, and T. D. Orlando,Phys. Rev. Lett. 42, 1165 (1979).

    Google Scholar 

  52. B. A. Huberman and S. Doniach,Phys. Rev. Lett. 42, 1169 (1979).

    Google Scholar 

  53. B. I. Halperin and D. R. Nelson,J. Low Temp. Phys. 36, 599 (1979).

    Google Scholar 

  54. S. I. Shevchenko,Fiz. Nizk. Temp. 7, 429 (1981).

    Google Scholar 

  55. Yu. N. Ovchinnikov,Zh. Eksp. Teor. Fiz. 64, 719 (1973).

    Google Scholar 

  56. A. A. Varlamov and V. V. Dorin,Zh. Eksp. Teor. Fiz. 91, 1546 (1986).

    Google Scholar 

  57. J. R. Toplicar and D. K. Finnemore,Phys. Rev. B 16, 2072 (1977).

    Google Scholar 

  58. E. M. Rudenko, V. A. Komashko, V. L. Noskov, and R. L. Zelenkevich,Fiz. Tverd. Tela 28, 2508 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubov, A.A., Kupriyanov, M.Y. Theoretical investigation of Josephson tunnel junctions with spatially inhomogeneous superconducting electrodes. J Low Temp Phys 70, 83–130 (1988). https://doi.org/10.1007/BF00683247

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683247

Keywords

Navigation