Skip to main content
Log in

Quasiparticle scattering amplitude for normal liquid3He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The quasiparticle scattering amplitude is calculated from a semimicroscopic model by analytically solving a generalization of Landau's integral equation to momentum transfers up to 2 PF. This solution in general does not obey exchange symmetry for a given particle-hole irreducible vertex partf pp′(q). We establish conditions for and explicitly construct exchange-symmetric scattering amplitudes by adding higher angular momentum components. Results using certain models forf pp′(q) are compared with transport properties of liquid3He.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau,Zh. Eksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3, 920 (1956)];Zh. Eksp. Teor. Fiz. 32, 59 (1957) [Sov. Phys. JETP 5, 101 (1957)];Zh. Eksp. Teor. Fiz. 35, 97 (1958) [Sov. Phys. JETP 8, 70 (1959)].

    Google Scholar 

  2. G. Baym and C. J. Pethick, inThe Physics of Liquid and Solid Helium, Part II, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1978).

    Google Scholar 

  3. H. Højgaard Jensen, H. Smith, and J. W. Wilkins,Phys. Lett. 27A, 532 (1968);Phys. Rev. 185, 323 (1969).

    Google Scholar 

  4. G. A. Brooker and J. Sykes,Phys. Rev. 170, 346 (1968); J. Sykes and G. A. Brooker,Ann. Phys. (New York) 56, 1 (1970).

    Google Scholar 

  5. B. R. Patton and A. Zaringhalam,Phys. Lett. 55A, 95 (1975).

    Google Scholar 

  6. C. J. Pethick and H. Smith,Phys. Rev. Lett. 37, 226 (1976);Physica 90B, 107 (1977); C. J. Pethick, H. Smith, and P. Bhattacharyya,Phys. Rev. Lett. 34, 643 (1975);J. Low Temp. Phys. 23, 225 (1976);Phys. Rev. B 15, 3384 (1977).

    Google Scholar 

  7. D. Einzel and P. Wölfle,J. Low Temp. Phys. 32, 19 (1978); P. Wölfle and D. Einzel,J. Low Temp. Phys. 32, 39 (1978); D. Einzel, to be published.

    Google Scholar 

  8. J. Hara, Y. A. Ono, K. Nagai, and K. Kawamura,J. Low Temp. Phys. 39, 603 (1980).

    Google Scholar 

  9. D. Rainer and J. W. Serene,Phys. Rev. B 13, 4745 (1976); J. W. Serene and D. Rainer, inQuantum Fluids and Solids, S. B. Trickey, E. D. Adams, and J. W. Duffy, eds. (Plenum, New York, 1977);Phys. Rev. B 17, 2901 (1978);J. Low Temp. Phys. 34, 589 (1979);Phys. Rep., to be published.

    Google Scholar 

  10. A. A. Abrikosov and I. M. Khalatnikov,Rep. Prog. Phys. 22, 329 (1959).

    Google Scholar 

  11. K. Dy and C. J. Pethick,Phys. Rev. 185, 373 (1969).

    Google Scholar 

  12. J. Sauls and J. W. Serene,Phys. Rev. B 24, 183 (1981).

    Google Scholar 

  13. K. Levin and O. Valls,Phys. Rev. B 20, 105, 120 (1979).

    Google Scholar 

  14. K. Bedell and D. Pines,Phys. Rev. Lett. 45, 39 (1980).

    Google Scholar 

  15. C. H. Aldrich III and D. Pines,J. Low Temp. Phys. 32, 689 (1978).

    Google Scholar 

  16. K. Bedell and D. Pines,Phys. Lett. A 78, 281 (1980).

    Google Scholar 

  17. K. Bedell,Phys. Rev. B 26, 3747 (1982).

    Google Scholar 

  18. P. Nozières,Theory of Interacting Fermi Systems (Benjamin, New York, 1964).

    Google Scholar 

  19. M. Abramowitz and I. Stegun,Handbook of Mathematical Functions (Dover, New York, 1971), p. 773.

    Google Scholar 

  20. M. Pfitzner, Diplomarbeit, Technischen Universität München (1981), unpublished.

  21. T. L. Ainsworth, K. S. Bedell, G. E. Brown, and K. F. Quader,J. Low Temp. Phys. 50, 319 (1983).

    Google Scholar 

  22. J. C. Wheatley,Rev. Mod. Phys. 47, 415 (1975).

    Google Scholar 

  23. T. A. Alvesalo, T. Haavasoja, and M. T. Manninen,J. Low Temp. Phys. 45, 373 (1981); T. A. Alvesalo, T. Haavasoja, M. T. Manninen, and A. T. Soinne,Phys. Rev. Lett. 44, 1076 (1980).

    Google Scholar 

  24. D. S. Greywall and P. A. Bush,Phys. Rev. Lett. 49, 146 (1982).

    Google Scholar 

  25. H. G. Bennewitz, G. H. Böhmann, D. E. Oates, and W. Schrader,Phys. Rev. Lett. 29, 533 (1972);Z. Phys. 253, 435 (1972).

    Google Scholar 

  26. W. D. Davidson,Proc. Phys. Soc. 87, 133 (1966).

    Google Scholar 

  27. D. F. Brewer, D. S. Betts, A. Sachrajda, and W. S. Truscott,Physica 108B, 1059 (1981).

    Google Scholar 

  28. J. M. Parpia, D. J. Sandiford, J. E. Berthold, and J. D. Reppy,Phys. Rev. Lett. 40, 565 (1979).

    Google Scholar 

  29. D. N. Paulson, M. Krusius, and J. C. Wheatley,Phys. Rev. Lett. 36, 1322 (1976).

    Google Scholar 

  30. J. C. Wheatley, inProgress in Low Temperature Physics, Vol. 7, D. F. Brewer, ed. (North-Holland, Amsterdam, 1978).

    Google Scholar 

  31. L. R. Corrucini, D. D. Osheroff, D. M. Lee, and R. C. Richardson,J. Low Temp. Phys. 8, 229 (1972).

    Google Scholar 

  32. K. Nara, I. Fujii, K. Kaneko, and A. Ikushima,Physica 108B, 1203 (1981).

    Google Scholar 

  33. G. E. Brown, C. J. Pethick, and A. Zaringhalam,J. Low Temp. Phys. 48, 349 (1982).

    Google Scholar 

  34. S. Fantoni, V. R. Pandharipande, and K. E. Schmidt,Phys. Rev. Lett. 48, 878 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfitzner, M., Wölfle, P. Quasiparticle scattering amplitude for normal liquid3He. J Low Temp Phys 51, 535–559 (1983). https://doi.org/10.1007/BF00683227

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683227

Keywords

Navigation