Skip to main content
Log in

Thermal response of a3He-superfluid-4He mixture

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The response of a layer of superfluid mixture to an ac heat source,Q(t)=Q 0 exp(iωt), is determined. In the low-frequency regime, the temperature response at the heated side of a superfluid layer is essentially identical to that of an ordinary fluid having a thermal conductivity κeff and a thermal diffusion coefficient Γ 0 /2. Here κeff is the effective conductivity of Khalatnikov, and Γ 0 is the diffusion coefficient of Griffin. At much higher frequencies, the results are more complicated. The low-frequency regime is defined in terms of the second sound velocityu 2 by ω≪u 2 2 0 . The ac response function is valuable in a number of ways. It can be used to obtain the system response to more complicated time-dependent variations inQ such as step changes inQ. A knowledge of the response function in the low-frequency regime provides a mechanism for directly determining the Kapitza resistance in mixtures. Finally, a knowledge of the response function provides an additional opportunity to test two-fluid hydrodynamics. Alternative tests of superfluid hydrodynamics are of particular interest in light of recent experiments that show anomalous values for κeff in the low3He concentration limit

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ahlers, inThe Physics of Liquid and Solid Helium, K. H. Bennemann and J. B. Keterson, ed. (Wiley, New York, 1976).

    Google Scholar 

  2. M. Tanaka, A. Ikushima, and K. Kawasaki,Phys. Lett. 61A, 119 (1977).

    Google Scholar 

  3. D. Gestrich, M. Dingus, and H. Meyer,Phys. Lett. 99A, 331 (1983); M. Dingus, F. Zhong, and H. Meyer,Phys. Rev. Lett. 54, 2347 (1985); M. Dingus, F. Zhong, J. Tuttle, and H. Meyer,J. Low Temp. Phys. 65, 213 (1986).

    Google Scholar 

  4. F. Zhong, J. Tuttle, and H. Meyer, to be published.

  5. T. C. P. Chui and J. A. Lipa,Phys. Rev. B 40, 4306 (1989).

    Google Scholar 

  6. E. D. Siggia,Phys. Rev. B. 15, 2830 (1977).

    Google Scholar 

  7. V. Dohm and R. Folk,Phys. Rev. B 28, 1332 (1983); R. Folk and A. Iro,Phys. Lett. 109A, 53 (1985).

    Google Scholar 

  8. A. Onuki,J. Low Temp. Phys. 53, 189 (1983).

    Google Scholar 

  9. I. M. Khalatnikov,Introduction to the Theory of Superfluidity (Benjamin, New York, 1965).

    Google Scholar 

  10. R. V. Duncan, G. Ahlers, and V. Steinberg,Phys. Rev. Lett. 58, 377 (1987).

    Google Scholar 

  11. R. Ferrell, to be published; private communication (1990).

  12. R. P. Behringer and H. Meyer,J. Low Temp. Phys. 46, 435 (1982).

    Google Scholar 

  13. L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon, Oxford, 1959).

    Google Scholar 

  14. R. V. Churchill, J. W. Brown, and R. F. Verhey,Complex Variables and Applications (McGraw-Hill, New York, 1976).

    Google Scholar 

  15. A. Griffin,Can. J. Phys. 47, 429 (1969).

    Google Scholar 

  16. D. S. Greywall and G. Ahlers,Phys. Rev. A 7, 2145 (1973).

    Google Scholar 

  17. R. Mehrotra and G. Ahlers,Phys. Rev. B 30, 5116 (1984).

    Google Scholar 

  18. F. Zhong, Ph.D. Thesis, Duke University, unpublished (1989).

  19. R. P. Behringer,J. Low Temp. Phys. 62, 15 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behringer, R.P. Thermal response of a3He-superfluid-4He mixture. J Low Temp Phys 81, 1–17 (1990). https://doi.org/10.1007/BF00683148

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683148

Keywords

Navigation