Skip to main content
Log in

Longitudinal relaxation time for dilute quantum gases

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We calculate the longitudinal relaxation timeT 1 for a polarized spin-1/2 Fermi gas, in zero magnetic field, for conditions of temperatureT and densityn such that Boltzmann statistics are valid. Our results show generally thatT 1 is independent of polarization of the gas. At highT, where the thermal wavelength λ is small compared to the scattering lengtha, T 1 is proportionalT 1/2, while at lowT, such that λ is greater thana, T 1 is proportional toT −1/2.T 1 thus has a minimum at some intermediate temperature confirming the numerical results of Shizgal. Physical arguments show that the existence of the minimum does not depend on the presence of an attractive part of the potential. As an example of the expected temperature dependence we calculateT 1 numerically, via the distorted-wave Born approximation, for the case of a gas interacting via a hard core. We also computeT 1 for a spin-1/2 Bose gas, which also shows a minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Shizgal,J. Chem. Phys. 58, 3424 (1973).

    Google Scholar 

  2. R. Chapman,Phys. Rev. A 12, 233 (1975).

    Google Scholar 

  3. C. Lhuillier and F. Laloë,J. Phys. (Paris)43, 197; 225 (1982).

    Google Scholar 

  4. A. E. Meyerovich,Progress in Low Temperature Physics, Vol. XI, D. F. Brewer, ed. (North Holland, Amsterdam, 1987), p. 1.

    Google Scholar 

  5. R. Chapman and M. G. Richards,Phys. Rev. Lett. 33, 18 (1974).

    Google Scholar 

  6. N. Bloembergen,Nuclear Magnetic Resonance (Benjamin, New York, 1961).

    Google Scholar 

  7. C. Cohen-Tannoudji, B. Diu, and F. Laloë,Quantum Mechanics, Vol. 4 (John Wiley & Sons, New York, 19), p. 955.

  8. C. Lhuillier,J. Phys. (Paris)44, 1 (1983).

    Google Scholar 

  9. A. Lagendijk, G. H. van Yperen and J. T. M. Walraven,J. Phys. Lett. 45, 929 (1984).

    Google Scholar 

  10. R. M. Ahn, J. P. H. W. v.d. Eijnde, and B. J. Verhaar,Phys. Rev. B 27, 5434 (1983).

    Google Scholar 

  11. F. M. Chen and R. F. Snider,J. Chem. Phys. 46, 3937 (1967).

    Google Scholar 

  12. I. Oppenheim and M. Bloom,Can. J. Phys. 39, 845 (1961).

    Google Scholar 

  13. A. Akhiezer and V. Aleksin,Dok. Akad. Nauk SSSR 92, 259 (1953).

    Google Scholar 

  14. I. P. Ipatova and G. M. Eliashberg,Zh. Eksp. Teor. Fiz. 43, 1795 (1962) [Sov. Phys.-JETP 16, 1269 (1963).

    Google Scholar 

  15. S. M. Havens-Sacco and A. Widom,Phys. Rev. B 25, 6696 (1982).

    Google Scholar 

  16. D. Vollhardt and P. Wolfle,Phys. Rev. Lett. 47, 190 (1981).

    Google Scholar 

  17. K. S. Bedell and D. E. Meltzer,J. Low Temp. Phys. 63, 215 (1986).

    Google Scholar 

  18. M. Lowe, P. C. Hammel, R. E. Ecke, K. Bedell, and M. Takigawa,Phys. Rev. B 37, 2281 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullin, W.J., Laloë, F. & Richards, M.G. Longitudinal relaxation time for dilute quantum gases. J Low Temp Phys 80, 1–13 (1990). https://doi.org/10.1007/BF00683111

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00683111

Keywords

Navigation