Skip to main content
Log in

Magnetic relaxation rates in spin-polarized hydrogen

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A self-contained discussion is presented of the longitudinal (T −11 ) and transverse (T −12 ) relaxation rates in bulk and surface samples of spin-polarized atomic hydrogen (H↓), at sufficiently low temperatures that only the lowest two atomic hyperfine levels are thermally populated. The nonhydrodynamic contribution to the rates, due to binary collisions between hydrogen atoms, in both normal and Bose condensed samples of H↓ are emphasized. However, the approach is general and is equally well suited for treating long-wavelength, hydrodynamic relaxation processes. Most of the discussion pertains to samples close to thermodynamic equilibrium. The calculation of the longitudinal relaxation rate for some states far from equilibrium, particularly relevant for real samples of H↓, is also presented. Some of the interesting results are:(1) the potentially long surface longitudinal relaxation time (T 1) in samples with most of the available surface area oriented perpendicular to the direction of the stabilizing field; (2) the possibility of extracting the condensate fractionn o(T)/n from aT 1 measurement in the Bose condensed state, and finally (3) an amusingGedanken experiment that would allow us to detect the onset of Bose condensation in aT 1 measurement in the absence of recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. W. Statt and A. J. Berlinsky,Phys. Rev. Lett. 45, 2105 (1980).

    Google Scholar 

  2. E. D. Siggia and A. E. Ruckenstein,Phys. Rev. B 23, 3580 (1980); A. E. Ruckenstein and E. D. Siggia,Physica 107B, 519 (1981).

    Google Scholar 

  3. A. Lagendijk,Phys. Rev. B 25, 2454 (1982).

    Google Scholar 

  4. A. E. Ruckenstein and E. D. Siggia,Phys. Rev. B 25, 6031 (1982).

    Google Scholar 

  5. B. W. Statt,Phys. Rev. B 25, 6035 (1982).

    Google Scholar 

  6. R. M. C. Ahn, J. P. H. W. v. d. Eynde, C. J. Reuver, B. J. Verhaar, and I. F. Silvera,Phys. Rev. B 26, 452 (1982).

    Google Scholar 

  7. R. W. Cline, T. J. Greytak, and D. Kleppner,Phys. Rev. Lett. 47, 1195 (1981).

    Google Scholar 

  8. R. Sprik, J. T. W. Walraven, G. H. van Yperen, and I. F. Silvera,Phys. Rev. Lett. 49, 153 (1982).

    Google Scholar 

  9. B. Yurke, J. S. Denker, B. R. Johnson, L. P. Levy, D. M. Lee, and J. H. Freed,Phys. Rev. Lett., submitted.

  10. B. Yurke, Ph.D. Thesis, Cornell University (1983), unpublished.

  11. D. O. Edwards and I. B. Mantz,J. Phys. (Paris)41, C7–257 (1980).

    Google Scholar 

  12. P. C. Hohenberg and P. C. Martin,Ann. Phys. (N. Y.)34, 291 (1965), and references therein.

    Google Scholar 

  13. R. A. Guyer and M. D. Miller,Phys. Rev. B 25, 5749 (1982).

    Google Scholar 

  14. E. D. Siggia and A. E. Ruckenstein,Phys. Rev. Lett. 44, 1423 (1980).

    Google Scholar 

  15. E. D. Siggia and A. E. Ruckenstein,J. Phys. (Paris)41, C7–15 (1980).

    Google Scholar 

  16. J. M. Greben, A. W. Thomas, and A. J. Berlinsky,Can. J. Phys. 59, 946 (1981), and references therein.

    Google Scholar 

  17. E. D. Siggia and A. E. Ruckenstein,Phys. Rev. B 23, 3580 (1980).

    Google Scholar 

  18. A. E. Ruckenstein, Ph.D. Thesis, Cornell University (1983), unpublished.

  19. A. Abragam,The Principles of Nuclear Magnetism (Oxford University Press, 1961).

  20. W. Kolos and L. Wolniewicz,Chem. Phys. Lett. 24, 457 (1974).

    Google Scholar 

  21. J. H. Freed,J. Chem. Phys. 72, 1414 (1980).

    Google Scholar 

  22. A. J. Berlinsky,Phys. Rev. Lett. 39, 359 (1977).

    Google Scholar 

  23. A. L. Fetter and J. D. Walecka,Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971).

    Google Scholar 

  24. V. V. Goldman and I. F. Silvera,Physica 107B, 515 (1981).

    Google Scholar 

  25. L. J. Lantto and R. M. Nieminen,J. Low Temp. Phys. 37, 1 (1979).

    Google Scholar 

  26. L. J. Lantto and R. M. Nieminen,J. Phys. (Paris)41, C7–49 (1980).

    Google Scholar 

  27. F. London,Superfluids (Dover, New York, 1964), Vol. II, Section 7.

    Google Scholar 

  28. N. N. Bogoliubov,J. Phys. (USSR)11, 23 (1947).

    Google Scholar 

  29. Y. H. Uang and W. C. Stwalley,J. Phys. (Paris)41, C7–33 (1980).

    Google Scholar 

  30. P. C. Hohenberg and P. M. Platzman,Phys. Rev. 152, 198 (1966).

    Google Scholar 

  31. B. I. Halperin and P. C. Hohenberg,Phys. Rev. 188, 898 (1969).

    Google Scholar 

  32. B. Yurke, D. Igner, E. Smith, B. Johnson, J. Denker, C. Hammel, D. Lee, and J. Freed,J. Phys. (Paris)41, C7–177 (1980).

    Google Scholar 

  33. Yu. Kagan, I. A. Vartanyants, and G. V. Shlyapnikov,Sov. Phys. JETP 54 (3), 590 (1981); Yu. Kagan and G. V. Shlyapnikov,Phys. Lett. 88A, 356 (1982).

    Google Scholar 

  34. I. B. Mantz and D. O. Edwards,Phys. Rev. B 20, 4518 (1980).

    Google Scholar 

  35. R. M. C. Ahn, J. P. H. W. v. d. Eijnde,, and B. J. Verhaar,Phys. Rev. B,27, 5424 (1983).

    Google Scholar 

  36. J. P. H. W. v. d. Eijnde, C. J. Reuver, and B. J. Verhaar,Phys. Rev. B,28, 6309 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruckenstein, A.E. Magnetic relaxation rates in spin-polarized hydrogen. J Low Temp Phys 70, 327–375 (1988). https://doi.org/10.1007/BF00682786

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682786

Keywords

Navigation