Skip to main content
Log in

Solid hydrogen and deuterium. I. Ground-state energy calculated by a lowest order constrained-variation method

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The ground-state energy of solid hydrogen and deuterium is calculated by means of a modified variational lowest order constrained-variation (LOCV) method. Both fcc and hcp H2 and D2 are considered, and the calculations are done for five different two-body potentials. For solid H2 we obtain theoretical results for the ground-state binding energy per particle from −74.9 K at an equilibrium particle density of 0.700 σ−3 or a molar volume of 22.3 cm3/mole to −91.3 K at a particle density of 0.725 σ−3 or a molar volume of 21.5 cm3/mole, where σ=2.958 Å. The corresponding experimental result is −92.3 K at a particle density of 0.688 σ−3 or a molar volume of 22.7 cm3/mole. For solid D2 we obtain theoretical results for the ground-state binding energy per particle from −125.7 K at an equilibrium particle density of 0.830 σ−3 or a molar volume of 18.8 cm3/mole to −140.1 K at a particle density of 0.843 σ−3 or a molar volume of 18.5 cm3/mole. The corresponding experimental result is −137.9 K at a particle density of 0.797 σ−3 or a molar volume of 19.6 cm3/mole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Leibfried and W. Ludwig,Solid State Phys. 12, 275 (1961).

    Google Scholar 

  2. D. J. Hooton,Phil. Mag. 46, 422, 433, 485, 701 (1955);3, 49 (1958).

    Google Scholar 

  3. R. P. Hurst and J. M. H. Levelt,J. Chem. Phys. 34, 54 (1961).

    Google Scholar 

  4. N. G. Van Kampen,Physica 27, 783 (1961).

    Google Scholar 

  5. L. H. Nosanow and G. L. Shaw,Phys. Rev. 128, 546 (1962).

    Google Scholar 

  6. L. H. Nosanow,Phys. Rev. Lett. 13, 270 (1964);Phys. Rev. 146, 120 (1966).

    Google Scholar 

  7. J. A. Krumhansl and S. Y. Wu,Phys. Lett. 28A, 263 (1968);Phys. Rev. B 5, 4155 (1972).

    Google Scholar 

  8. E. Østgaard,J. Low Temp. Phys. 5, 237 (1971);Physica 74, 113 (1974).

    Google Scholar 

  9. V. Canuto, J. Lodenquai, and S. M. Chitre,Phys. Rev. A 8, 949 (1973).

    Google Scholar 

  10. K. A. Brueckner and J. L. Gammel,Phys. Rev. 105, 1679 (1957);109, 1023 (1958).

    Google Scholar 

  11. H. A. Bethe and J. Goldstone,Proc. Roy. Soc. A 238, 551 (1957).

    Google Scholar 

  12. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,J. Chem. Phys. 21, 1087 (1953).

    Google Scholar 

  13. T. A. Bruce,Phys. Rev. B 5, 4170 (1972).

    Google Scholar 

  14. V. R. Pandharipande,Nucl. Phys. A 217, 1 (1973).

    Google Scholar 

  15. R. Mittet and E. Østgaard,Nucl. Phys. A 411, 417 (1983).

    Google Scholar 

  16. O. Svorstøl and E. Østgaard,Phys. Rev. 34, 6192 (1986).

    Google Scholar 

  17. O. Svorstøl and E. Østgaard,Phys. Rev. 35, 4713 (1987).

    Google Scholar 

  18. V. R. Pandharipande,Nucl. Phys. A 174, 641 (1971);178, 123 (1971).

    Google Scholar 

  19. V. R. Pandharipande and H. A. Bethe,Phys. Rev. C 4, 1312 (1973).

    Google Scholar 

  20. E. Lunnan and E. Østgaard,Physica 101B, 22 (1980).

    Google Scholar 

  21. O. Forseth and E. Østgaard,Physica Scripta 24, 519 (1981).

    Google Scholar 

  22. A. M. Michels, W. de Graaf, and C. A. ten Seldam,Physica 26, 393 (1960).

    Google Scholar 

  23. J. C. Slater and J. G. Kirkwood,Phys. Rev. 37, 682 (1931).

    Google Scholar 

  24. E. A. Mason and W. E. Rice,J. Chem. Phys. 22, 522 (1954).

    Google Scholar 

  25. I. B. Srivastava and A. K. Barua,Ind. J. Phys. 35, 722 (1965).

    Google Scholar 

  26. J. de Boer,Physica Suppl. 24, 90 (1958),

    Google Scholar 

  27. I. F. Silvera and V. V. Goldman,J. Chem. Phys. 69, 4209 (1978).

    Google Scholar 

  28. E. Simon,Z. Phys. 15, 307 (1923).

    Google Scholar 

  29. H. D. Megaw,Phil. Mag. 28, 129 (1939).

    Google Scholar 

  30. K. Clusius and E. Bartholome,Z. Phys. Chem. B 33, 387 (1935).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettersen, G., Østgaard, E. Solid hydrogen and deuterium. I. Ground-state energy calculated by a lowest order constrained-variation method. J Low Temp Phys 70, 279–300 (1988). https://doi.org/10.1007/BF00682783

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682783

Keywords

Navigation