Skip to main content
Log in

Surface conductivity in rocks: a review

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Electrical properties of rocks depend on composition (i.e. bulk properties of the constituents), micro structure (i.e. geometrical arrangement of the constituents) and interfacial effects. We consider here a rock as a three component system — grains, pores, and interfaces — in order to account for the observed behaviour. We review first the main results relative to DC. conductivity. Surface conductivity effects show up clearly in the case of shaly formations or at low salinities. Although Archies' law (1942) and Waxman and Smits model (1968) are widely used, a more physically based model is that of Johnson and Sen (1988). We review also the variable frequency conductivity (complex conductivity) data and models. The important effect in that case is the enhancement of the dielectric constant at low frequencies (Knight and Nur, 1987) which can be interpreted as a geometrical effect although electrochemical interactions may also play an important role at low frequencies, depending on the rock type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson, A. W.: 1982, ‘Physical Chemistry of Surfaces’, 664p, Wiley eds.

  • Archie, G. E.: 1942, ‘The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics’,Trans. AIME 146, 56–62.

    Google Scholar 

  • Alvarez, R.: 1973, ‘Complex Dielectric Permittivity in Rocks: A Method for Its Measurements and Analysis’,Geophysics 38, 920–940.

    Google Scholar 

  • Bussian, A. E.: 1983, ‘Electrical Conductance in a Porous Medium’,Geophysics 48(9), 1258–1268.

    Google Scholar 

  • Clavier, C., Coates, G. and Dumanoir, J.: 1977, ‘The Theoretical and Experimental Basis for the “Dual Water” Model for Interpretation of Shaly Sands’,52nd Ann. Fall Tech. and Exhib., Soc. Petr. Eng., paper 15968.

  • Cole, K. S. and Cole R. H.: 1941, ‘Dispersion and Absorption in Dielectrics’,J. Chem. Phys. 9, 341–351.

    Google Scholar 

  • Davidson, D. W. and Cole, R. H.: 1951, ‘Dielectric Relaxation in Glycerol, Propylene, Glycol, andn-Propanol’,J. Chem. Phys. 29, 1484–1490.

    Google Scholar 

  • Debye, P.: 1929,Polar Molecules, Chemical Catalog Co.

  • De Levie, R.: 1965, ‘The Influence of Surface Roughness of Solid Electrodes on Electrochemical Measurements’,Electrochemica Acta 10, 113–130.

    Google Scholar 

  • De Lima, O. A. L. and Sharma, M. M.: 1990, ‘A Grain Conductivity Approach to Shaly Sandstones’,Geophysics 55(10), 1347–1358.

    Google Scholar 

  • De Lima, O. A. L. and Sharma, M. M.: 1992, ‘A Generalized Maxwell Wagner Theory for Membrane Polarization in Shaly Sands’,Geophysics 57(3), 431–440.

    Google Scholar 

  • Fixman, M.: 1980, ‘Charged Molecules in External Fields 1. The Sphere’,J. Phys. Chem. 72, 5177–5186.

    Google Scholar 

  • Gueguen, Y. and Dienes, J.: 1989, ‘Transport Properties of Rocks from Statistics and Percolation’,Math. Geol. 21, 1–13.

    Google Scholar 

  • Glover, P. W. and Vine, F. J.: 1992, ‘Electrical Conductivity of Carbon Bearing Granulite at Raised Temperatures and Pressures’,Nature 360, 723–725.

    Google Scholar 

  • Hilfer, R.: 1991, ‘Geometric and Dielectric Characterization of Porous Media’,Phys. Rev. B 44(1), 60–75.

    Google Scholar 

  • Jackson, P. D., Taylor-Smith, D. and Stanford, P. N.: 1978, ‘Resistivity — Porosity Particle Shape Relationships for Marine Sands’,Geophysics 43, 1250–1268.

    Google Scholar 

  • Johnson, D. L. and Sen, P. N.: 1988, ‘Dependence of the Conductivity of a Porous Medium on Electrolyte Conductivity’,Phys. Rev. B 37.

  • Katz, A. J. and Thompson, A. H.: 1985, ‘Fractal Sandstones Pores: Implication for Conductivity and Pore Formation’,Phys. Rev. Lett. 54, 1325–1328.

    Google Scholar 

  • Knight, R. J. and Nur A. N.: 1987, ‘The Dielectric Constant of Sandstones, 60 kHz to 4 MHz’,Geophysics 52, 644–654.

    Google Scholar 

  • Krohn, C. E.: 1988, ‘Fractal Measurements of Sandstones, Shales and Carbonates’,J. Geophys. Res. 93(B4), 3286–3296.

    Google Scholar 

  • Le Mehaute, A. and Crepy, G.: 1983, ‘Introduction to Transfer and Motion in Fractal Media: The Geometry of Kinetics’,Solid States Ionics 9 & 10, 17–30.

    Google Scholar 

  • Marschall, D. J. and Madden, T. R. 1959, ‘Induced Polarization, a Study of its Causes’,Geophysics XXIV(4), 790–813.

    Google Scholar 

  • Olhoeft, G. R.: 1987, ‘Electrical Properties from 10−3 to 10+9 Hz - Physics and Chemistry, in Physics and Chemistry of Porous Media II’, in Banavar, J. R., Koplik, J. and Winkler, K. W. (eds.), AIP conference proceedings 154. American Institute of Physics. New York, pp. 281–298.

    Google Scholar 

  • Pape, H., Riepe, L. and Schopper, J. R.: 1981, ‘Calculating Permeability from Surface Area Measurements’, S.A.I.D. Paris, Paper 17.

  • Pelton, W. H., Wards, H., Hallof, P. G., Sill, W. R. and Nelson, P. H.: 1978, ‘Mineral Discrimination and Removal of Inductive Couplingwith Multifrequency I. P.’,Geophysics 43(3), 588–609.

    Google Scholar 

  • Poley, J. Ph., Nooteboom, J. J. and de Waal, P. J.: ‘Use of VHF Dielectric Measurement for Borehole Formations Analysis’,Log Analyst 8-30.

  • Roberts, J. N. and Schwartz, L. M.: 1989,Phys. Rev. B 31, 5990.

    Google Scholar 

  • Ruffet, C.: 1993,La Conductivité Électrique de Quelques Roches Crustales, Ph. D, Strasbourg.

    Google Scholar 

  • Ruffet, C., Gueguen, Y. and Darot, M.: 1991, ‘Complex Conductivity Measurements and Fractal Nature of Porosity’,Geophysics 56(6), 758–768.

    Google Scholar 

  • Schwartz, L. M., Sen, P. N. and Johnson, D. L.: 1989, ‘Influence of Rough Surfaces on Electrolytic Conduction, in Porous Media’,Phys. Rev. B. 40, 4.

    Google Scholar 

  • Sen, P. N.: 1981, ‘Relation of Certain Geometrical Features to the Dielectric Anomaly of Rocks’,Geophysics 46, 1714–1720.

    Google Scholar 

  • Sen, P. N., Scala, C. and Cohen, M. H.: 1981, ‘A Self Similar Model for Sedimentary Rocks with Application to the Dielectric Constant of Fused Glass Beads’,Geophysics 46, 781–795.

    Google Scholar 

  • Simmons, G. and Richter, D.: 1976, ‘Microcracks in Rocks. The Physics and Chemistry of Minerals and Rocks’,Geophysics 38(1), 37–48.

    Google Scholar 

  • Wait, J. R.: 1987, ‘Physical Model for Complex Resistivity of the Earth’,Electronics Letters 23(19), 979–980.

    Google Scholar 

  • Warburg, R. E.: 1899, ‘Uber das Verhalten sogennanter unpolarisirbaren Elektroden gegen Wechsel strom’,Annale der Physic und Chemie, 3, Neue Folge, Band 67.

    Google Scholar 

  • Waxman, M. H. and Smits, L. J. M.: 1968, ‘Electrical Conductivities in Oil-Bearing Shaly Sands’,Soc. Petr. Eng. J. 8, 107–122.

    Google Scholar 

  • Wong, P. Z., Koplik, J. and Tomanic, J. P.: 1984,Phys. Rev. B 30, 6066.

    Google Scholar 

  • Wong, P. Z.: 1987, ‘Fractal Surface in Porous Media’, in Banavar, J. R., Koplik, J. and Winkler, K. W. (eds.),Physics and Chemistry of Porous Media, Vol. 2, Am. Inst. Phys. Conference Proceedings 154, Am. Inst. Phys., pp. 304–318.

  • Wong, T. F., Fredrich, J. T. and Gwanmesia, G. D.: 1989, ‘Crack Aperture Statistics and Pore Space Fractal Geomerty of Westerly Granite and Rutland Quartzite: Implication for an Elastic Contact Model of Rock Compressibility’,J. Geophys. Res. 94(B8), 10267–10278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruffet, C., Darot, M. & Guéguen, Y. Surface conductivity in rocks: a review. Surv Geophys 16, 83–105 (1995). https://doi.org/10.1007/BF00682714

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682714

Key words

Navigation