Journal of Low Temperature Physics

, Volume 81, Issue 3–4, pp 179–187 | Cite as

The damping of a vibrating wire resonator in 0.003% and 0.1%3He-4He solutions below 120 mK. The effective viscosity of a 0.1% solution

  • A. M. Guénault
  • T. R. Nichols
  • G. R. Pickett


We have measured the damping of a 13-µm diameter vibrating wire resonator in 0.1% and 0.003%3He-4He solutions at temperatures between 7 and 120 mK. This is a particularly interesting system since it involves a transition from Fermi-Dirac to Maxwell-Boltzmann statistics and also a transition from viscous to ballistic behavior. Contributions to the damping on the wire from sources other than the3He quasiparticle component in the solutions are determined by measurements in pure4He. The viscosity inferred from the data for the 0.1% solution spans the quantum to classical transition, with a minimum at around 13 mK. The temperature dependence of the viscosity is in close agreement with that obtained from recent measurements of the damping of second sound, although the absolute values differ by about 25%. In the 0.003% solution the quasiparticle mean free path is much larger than the wire radius, so that momentum density rather than viscosity is the determining physical quantity. Nevertheless the measured damping on the wire is to found be in excellent agreement with the predictions of a simple kinetic approach, with no adjustable parameters.


Viscosity Magnetic Material Excellent Agreement Free Path Physical Quantity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bardeen, G. Baym, and D. Pines,Phys. Rev. 156, 207 (1967).Google Scholar
  2. 2.
    R. J. Church, J. R. Owers-Bradley, P. C. Main, G. McHale, and R. M. Bowley,Jpn. J. Appl. Phys. (Suppl.)26–3, 209 (1987); J. R. Owers-Bradley, P. C. Main, R. J. Church, T. M. M. Hampson, G. McHale, and R. M. Bowley,J. Low Temp. Phys. 77, 329 (1989).Google Scholar
  3. 3.
    A. M. Guénault, V. Keith, C. J. Kennedy, S. G. Mussett, and G. R. Pickett,J. Low Temp. Phys. 62, 511 (1986).Google Scholar
  4. 4.
    W. Ruesink, J. P. Harrison, and A. Sachrajda,J. Low Temp. Phys. 70, 393 (1988).Google Scholar
  5. 5.
    T. M. M. Hampson, G. McHale, and R. M. Bowley,Spin Polarized Quantum Systems (World Scientific, Singapore, 1989) p. 165; T. M. M. Hampson, R. M. Bowley, D. Brugel, and G. McHale,J. Low Temp. Phys. 73, 333 (1988).Google Scholar
  6. 6.
    E. P. Bashkin and A. E. Mayerovich,Adv. Phys. 30, 1 (1981); A. E. Meyerovich,Prog. Low Temp. Phys. 11, 1 (1987).Google Scholar
  7. 7.
    J. R. Owers-Bradley, P. C. Main, R. M. Bowley, G. J. Batey, and R. J. Church,J. Low Temp. Phys. 72, 201 (1988).Google Scholar
  8. 8.
    K. A. Kuenhold, D. B. Crum, and R. E. Sarwinski,Phys. Lett. 41 A, 13 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. M. Guénault
    • 1
  • T. R. Nichols
    • 1
  • G. R. Pickett
    • 1
  1. 1.Department of PhysicsLancaster UniversityLancasterU.K.

Personalised recommendations