Advertisement

Journal of Low Temperature Physics

, Volume 81, Issue 3–4, pp 129–146 | Cite as

Paraconductivity in an unconventional layered superconductor

  • Sungkit Yip
Article

Abstract

We study the paraconductivity in an impure, unconventional layered superconductor with an underlying square lattice. The overall magnitude of the paraconductivity is found to be reduced by ordinary impurity scattering. For the case of a one-component order parameter, the paraconductivity has the same form as that of ans-wave, apart from the above mentioned reduction factor, and is independent of the coherence length in the plane. For the case of a two component order parameter, the result consists of two parts, the first being simply twice the one component result, the second nonnegative one arising only when the eigenvalues or the eigenvectors of the gradient term in the free energy cannot be chosen to be independent of the angle in the plane.

Keywords

Free Energy Coherence Magnetic Material Reduction Factor Coherence Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Fisket al., Science 239, 33 (1988).Google Scholar
  2. 2.
    S. E. Inderheeset al., Phys. Rev. Lett. 60, 1178 (1988).Google Scholar
  3. 3.
    K. Kanodaet al., J. Phys. Soc. Jpn. 57, 1554 (1988).Google Scholar
  4. 4.
    B. Ohet al., Phys. Rev. B 37, 7861 (1988).Google Scholar
  5. 5.
    Y. Matsudaet al., Solid State Commun. 68, 103 (1988).Google Scholar
  6. 6.
    S. Hagenet al., Phys. Rev. B 38, 7137 (1988).Google Scholar
  7. 7.
    T. A. Friedmannet al., Phys. Rev. B 39, 4258 (1989).Google Scholar
  8. 8.
    S. Martinet al., Phys. Rev. Lett. 62, 677 (1989).Google Scholar
  9. 9.
    S. N. Artemenkoet al., Phys. Lett. A 138, 428 (1989).Google Scholar
  10. 10.
    M. Tinkham,Introduction to Superconductivity (Krieger, New York, 1975), chap. 7.Google Scholar
  11. 11.
    S.-K. Ma,Modern Theory of Critical Phenomena (Benjamin, New York, 1976), chap. 3.Google Scholar
  12. 12.
    J. F. Annett, M. Randeria, and S. R. Renn,Phys. Rev. B 38, 4660 (1988).Google Scholar
  13. 13.
    L. G. Aslamazov and A. I. Larkin,Fiz. Tverd. Tela. 10, 1104 [Sov. Phys. Sol. State 10, 875 (1968)].Google Scholar
  14. 14.
    K. Maki,Prog. Theor. Phys. 40, 193 (1968).Google Scholar
  15. 15.
    R. S. Thompson,Phys. Rev. B 1, 32 (1970).Google Scholar
  16. 16.
    W. Brenig,J. Low Temp. Phys. 60, 297 (1985).Google Scholar
  17. 17.
    S.-K. Yip,Phys. Rev. B 41, 2612 (1990).Google Scholar
  18. 18.
    R. Balian and N. R. Werthamer,Phys. Rev. 131, 1553 (1963).Google Scholar
  19. 19.
    W. E. Lawrence and S. Doniach,Proceedings of Twelfth International Conference on Low Temperature Physics, Kyoto, Japan, 1970 (Keigaku, Tokyo, 1971), p. 361.Google Scholar
  20. 20.
    S.-K. Yip,Bull. Am. Phys. Soc. 35, 812 (1990).Google Scholar
  21. 21.
    M. Sigrist and T. M. Rice,Z. Phys. B 68, 9 (1987).Google Scholar
  22. 22.
    N. R. Werthamer, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), chap. 6.Google Scholar
  23. 23.
    L. I. Burlachov,Zh. Eksp. Teor. Fiz. 89, 1382 (1985) [Sov. Phys.-JETP 62, 800 (1985)].Google Scholar
  24. 24.
    D. M. Brink and G. R. Satchler,Angular Momentum (Clarendon Press, Oxford, 1972), section 2.4.Google Scholar
  25. 25.
    U. Welpet al., Phys. Rev. Lett. 62, 1908 (1989); W. Bauhoferet al., Phys. Rev. Lett. 63, 2520 (1989) and references therein.Google Scholar
  26. 26.
    Y. Matsudaet al., Phys. Rev. B 40, 5176 (1989) and references therein.Google Scholar
  27. 27.
    S. Theodorakis and Z. Tesanovic,Phys. Rev. B,40, 6659 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Sungkit Yip
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege Park

Personalised recommendations