Advertisement

Journal of Low Temperature Physics

, Volume 74, Issue 5–6, pp 475–490 | Cite as

Investigation of defect structure of neutron-irradiated crystalline silicon by low-temperature thermal conductivity

  • G. Pompe
  • N. abd el Rehim
  • M. Mertig
Article

Abstract

The thermal conductivity of initially n-type silicon irradiated at temperatures higher than room temperature with fast neutron doses between 2·1018 and 2·1019 n/cm2 and following thermal annealing at 375 °C and 800 °C was measured at low temperatures (2–200 K). Additionally, the heat capacity was investigated in the temperature range from 2 K to 50 K. With the help of the analysis of λ(T) on the basis of the Callaway model, results on the nature of neutron-induced defects and their change by annealing were obtained. The neutron-induced damage can be described by point defects and by extended defects in the kind of dislocations or dislocation loops, respectively. The interaction of point defects with phonons appears as Rayleigh scattering and partially as resonance-like scattering. At the Si sample with highest neutron dose, an anomalous behavior (“cooling effect”) was observed after annealing at 375 °C. The state of structure is not stable by cooling between room temperature and 78 K and therefore a decrese of λ(T) with each cooling cycle is obtained. A significant change of specific heat was not observed by neutron irradiation.

Keywords

Thermal Conductivity Heat Capacity Point Defect Thermal Annealing Fast Neutron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Albany and M. Vandevyver,J. Appl. Phys. 38, 425 (1967).Google Scholar
  2. 2.
    P. Seyfert,J. Low Temp. Phys. 2, 555 (1970).Google Scholar
  3. 3.
    W. Primak,Phys. Rev. 110, 1240 (1958).Google Scholar
  4. 4.
    J. W. Gardner and A. C. Anderson,Phys. Rev. B 23, 474 (1981).Google Scholar
  5. 5.
    P. F. Sullivan and G. Seidel,Phys. Rev. 173, 679 (1968).Google Scholar
  6. 6.
    M. Mertig, Dissertation, Dresden Technical University (1983), unpublished.Google Scholar
  7. 7.
    Y. H. Lee and J. W. Corbett,Phys. Rev. B 9, 4351 (1974).Google Scholar
  8. 8.
    J. Guldberg,J. Phys. D 11, 2043. (1978).Google Scholar
  9. 9.
    Th. O. Baldwin, J. E. Thomas, J. K. Haldeman,J. Appl. Phys. 50, 3478 (1979).Google Scholar
  10. 10.
    P. Flubacher, A. J. Leadbetter, J. A. Morrison,Phil. Mag. 4, 273 (1959).Google Scholar
  11. 11.
    A. D. Zdetsis, C. S. Wang,Phys. Rev. B 19, 2999 (1979).Google Scholar
  12. 12.
    H. J. Schink, H. v. Löhneysen,Appl. Phys. (Ger.)A 36, 15 (1985); H. v. Löhneysen,J. Non-Cryst. Solids 59, 60, 1087 (1983).Google Scholar
  13. 13.
    M. Mertig, G. Pompe, and E. Hegenbarth,Solid State Commun. 49, 369 (1984).Google Scholar
  14. 14.
    J. W. Callaway,Phys. Rev. 113, 1046 (1959).Google Scholar
  15. 15.
    R. Berman, F. E. Simon, and S. M. Ziman,Proc. R. Soc. A 220, 171 (1953).Google Scholar
  16. 16.
    P. G. Klemens,Proc. R. Soc. A 68, 1113 (1955).Google Scholar
  17. 17.
    M. G. Holland, L. J. Neuringer, Proceedings of the International Conference on Physics and Semiconductors (The Institute of Physics and the Physical Society, London, 1962), p. 474.Google Scholar
  18. 18.
    I. Narayan and J. Fletcher, inDefects in Semiconductors, J. Narayan and T. Y. Tan, eds (North Holland, Amsterdam, 1980).Google Scholar
  19. 19.
    R. S. Nelson inRadiation Damage Processes in Materials, C. H. S. Dupey, ed. (Noordhoff, Leyden, 1975).Google Scholar
  20. 20.
    M. A. Ghantous, K. Guckelsberger, and M. Locatelli,J. Phys. Chem. Solids 41, 473 (1980).Google Scholar
  21. 21.
    R. O. Pohl inElementary Excitations in Solids, A. A. Maradudin and G. F. Nardelli, eds. (Plenum Press, New York, 1969), p. 259.Google Scholar
  22. 22.
    J. M. Meese, inNeutron Transmutation Doping in Silicon, J. Guldberg, ed. (Plenum Press, New York, 1981), p. 101.Google Scholar
  23. 23.
    A. Kumar, B. K. Srivastava, and M. A. Ansari,Phys. Status Solidi B138, 423 (1986).Google Scholar
  24. 24.
    L. A. Turk and P. G. Klemens,Phys. Rev. B 9, 4422 (1974).Google Scholar
  25. 25.
    G. Leibfried,Bestrahlungseffekte in Festkörpern (Teubner-Verlag, Stuttgart, 1965).Google Scholar
  26. 26.
    N. abd el Rehim, Dissertation, Dresden Technical University (1985), unpublished.Google Scholar
  27. 27.
    H. J. Stein,J. Appl. Phys. 38, 204 (1967).Google Scholar
  28. 28.
    Y. H. Lee and J. W. Corbett,Phys. Rev. B 8, 2810 (1973).Google Scholar
  29. 29.
    R. C. Newman and D. H. J. Totterdell,J. Phys. C 8, 3944 (1975).Google Scholar
  30. 30.
    B. Schröder, H. Wild, and E. Minniger,J. Nucl. Mater. 108, 685 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • G. Pompe
    • 1
  • N. abd el Rehim
    • 1
  • M. Mertig
    • 1
  1. 1.Department of PhysicsDresden University of TechnologyDresdenGerman Democratic Republic

Personalised recommendations