Advertisement

Journal of Low Temperature Physics

, Volume 68, Issue 1–2, pp 85–107 | Cite as

Theory of periodically driven, current-carrying, superconducting filaments. I. Spatially homogeneous states

  • Rafael Rangel
  • Lorenz Kramer
Article

Abstract

Starting from the nonequilibrium theory of dirty superconductors in the Ginzburg-Landau regime, spatially homogeneous states with an applied currentI=I0+I1 cos (ωt) are considered. Expressions for the linear response (I1 small) valid up to high frequencies (ħω≪kBTc) are derived and evaluated analytically for the experimentally important case of smallI0 and ħω≪Δ0(T). Then the nonlinear response is treated for frequencies with ωτE≪1. Interesting new behavior is found for frequencies ωτ0 ∼1, where τ0 is essentially the GL relaxation time.

Keywords

Relaxation Time Magnetic Material Linear Response Nonlinear Response Homogeneous State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Schmid, inNonequilibrium Superconductivity, Phonons and Kapitza Boundaries (NATO Advanced Study Institute B65), K. E. Gray, ed. (1981); C. R. Hu,Phys. Rev. B21, 2775 (1980).Google Scholar
  2. 2.
    R. J. Watts-Tobin, Y. Krähenbühl, and L. Kramer,J. Low Temp. Phys. 42, 459 (1981).Google Scholar
  3. 3.
    R. Tidecks and T. Werner,J. Low Temp. Phys. 65, 151 (1986); and to be published.Google Scholar
  4. 4.
    L. Kramer and R. Rangel,J. Low Temp. Phys. 57, 389 (1984).Google Scholar
  5. 5.
    V. P. Galaiko and N. B. Kopnin, inNonequilibrium Superconductivity, D. N. Langenberg and A. I. Larkin, eds. (North-Holland, Amsterdam, 1986).Google Scholar
  6. 6.
    G. Schön, inNonequilibrium Superconductivity, D. N. Langenberg and A. I. Larkin, eds. (North-Holland, Amsterdam, 1986); Thesis, University of Dortmund (1975).Google Scholar
  7. 7.
    Yu. N. Ovchinnikov and G. Schön, unpublished (1981).Google Scholar
  8. 8.
    D. C. Mattis and J. Bardeen,Phys. Rev. 111, 412 (1958); J. R. Callen and R. Ferrel,Phys. Rev. 146, 282 (1966).Google Scholar
  9. 9.
    A. Schmid,Phys. Rev. 186, 420 (1969).Google Scholar
  10. 10.
    R. Peters and H. Meissner,Phys. Rev. Lett. 30, 965 (1973).Google Scholar
  11. 11.
    A. J. Ritger and H. Meissner,J. Low Temp. Phys. 40, 495 (1980).Google Scholar
  12. 12.
    A. J. Ritger, Ph. D. Thesis, Stevens Institute of Technology, Hoboken, New Jersey (1980).Google Scholar
  13. 13.
    J. Beyer-Nielsen, H. Schmidt, and S. R. Young,J. Low Temp. Phys. 55, 33 (1984).Google Scholar
  14. 14.
    Yu. N. Ovchinnikov, A. Schmid, and G. Schön,Phys. Rev. Lett. 46, 1013 (1981).Google Scholar
  15. 15.
    J. A. Pals and J. J. Ramekers,Phys. Lett. 87A, 186 (1982).Google Scholar
  16. 16.
    J. A. Pals, J. A. Geurst, and J. J. Ramekers,Phys. Rev. B 23, 6184 (1981).Google Scholar
  17. 17.
    M. Stuivinga, C. L. G. Ham, T. M. Klapwijk, and J. E. Mooij,J. Low Temp. Phys. 53, 633 (1983).Google Scholar
  18. 18.
    H. Meissner, private communication.Google Scholar
  19. 19.
    H. Weissbrod, R. Gross and R. P. Hübener,Solid State Commun. 60, 147 (1986).Google Scholar
  20. 20.
    R. A. Peters, T. F. Refai, S. A. Wolff, and F. J. Rachford,IEEE Trans. Magn. MAG-15, 280 (1979).Google Scholar
  21. 21.
    L. P. Gorkov,Zh. Eksp. Teor. Fiz. Pisma 11, 52 (1970) [JETP Lett. 11, 32 (1970)].Google Scholar
  22. 22.
    I. O. Kulik,Zh. Eksp. Teor. Fiz. 59, 584 (1970) [Sov. Phys. JETP 32, 318 (1971)].Google Scholar
  23. 23.
    L. Kramer and A. Baratoff,Phys. Rev. Lett. 38, 518 (1977).Google Scholar
  24. 24.
    P. F. Byrd and M. D. Friedmann,Handbook of Elliptic Integrals for Engineers and Scientists (Springer, Berlin, 1971).Google Scholar
  25. 25.
    A. Geier and G. Schön,J. Low. Temp. Phys. 46, 151 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Rafael Rangel
    • 1
  • Lorenz Kramer
    • 1
  1. 1.Physikalisches Institut der Universität BayreuthBayreuthWest Germany

Personalised recommendations