Advertisement

Journal of Paleolimnology

, Volume 14, Issue 1, pp 69–82 | Cite as

Siliceous microfossil distribution in the surficial sediments of Lake Baikal

  • E. F. Stoermer
  • M. B. Edlund
  • C. H. Pilskaln
  • C. L. Schelske
Article

Abstract

Examination of surficial sediments at 16 stations shows minor, but consistent differences in the numbers and kinds of siliceous microfossils deposited in different regions of Lake Baikal. There is a general north-south decreasing trend in total microfossil abundance on a weight basis. Endemic plankton diatom species are the most abundant component of assemblages at all stations. Chrysophyte cysts are present at all stations, but most forms are more abundant at northern stations. Non-endemic plankton diatom species are most abundant at southern stations. Small numbers of benthic diatoms and sponge spicules are found in all samples. Although low numbers are present in offshore sediments, the benthic diatom flora is very diverse. Principal components analysis confirms primary north-south abundance trends and suggests further differentiation by station location and depth.

Key words

Russia Lake Baikal paleolimnology diatoms stomatocysts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battarbee, R. W., 1973. A new method for estimating absolute microfossil numbers with special reference to diatoms. Limnol. Oceanogr. 18: 647–653.Google Scholar
  2. Bradbury, J. P., Ye. V. Bezrukova, G. P. Chernyaeva, S. M. Colman, G. Khursevich, J. W. King & Ye. V. Likoshway, 1994. A synthesis of post glacial diatom records from Lake Baikal. J. Paleolimnol. 10: 213–252.Google Scholar
  3. Chernyaeva, G. E., 1970. Diatoms in the bottom sediments of north ern Lake Baikal. pp. 144–160. In: Bottom Deposits of Baikal, Academy of Sciences, Moscow. (in Russian)Google Scholar
  4. Conley, D. J. & C. L. Schelske, 1993. Potential role of sponge spicules in influencing the silicon biogeochemistry of Florida lakes. Can. J. Fish. aquat. Sci. 50: 296–302.Google Scholar
  5. DeMaster, D. J., 1981. The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta 45: 1715–1732.Google Scholar
  6. Edgington, D. N., J. V. Klump, J. A. Robbins, Y. S. Kusner, V. D. Pampura & I. V. Sandimirov, 1991. Sedimentation rates, residence times and radionuclide inventories in Lake Baikal from137Cs and210Pb in sediment cores. Nature 350: 601–604.Google Scholar
  7. Edlund, M. B., E. F. Stoermer & C. H. Pilskaln, submitted. Siliceous microfossil succession in the recent history of two basins in Lake Baikal. J. Paleolimnol.Google Scholar
  8. Eggimen, D. W., F. T. Manheim & P. R. Betzer, 1980. Dissolution and analysis of amorphous silica in marine sediments. J. Sediment. Petrol. 50: 215–225.Google Scholar
  9. Flower, R. J., 1993. A taxonomic re-evaluation of endemicCyclotella taxa in Lake Baikal, Siberia. Nova Hedwigia, Beih. 106: 203–220.Google Scholar
  10. Foged, N., 1993. Some diatoms from Siberia, especially from Lake Baikal. Diatom Res. 8: 231–279.Google Scholar
  11. Genkal, S. I. & G. I. Popovskaya, 1991. New data on the frustule morphology ofAulacosira islandica. Diatom Res. 6: 255–266.Google Scholar
  12. Glover, R. M., 1982. Diatom fragmentation in Grand Traverse Bay, Lake Michigan and its implications for silica cycling. Doctoral Dissertation, University of Michigan, Department of Atmospheric and Oceanic Sciences, 282 pp.Google Scholar
  13. Granina, L. Z., M. A. Grachev, E. B. Karabanov, V. M. Kuptsov, M. K. Shimaraeva & D. F. Williams, 1993. Accumulation of biogenic silica in bottom sediments of Baikal. Geologiya i Geofizika 34: 126–135.Google Scholar
  14. Hutchinson, D. R., A. J. Golmshtok, L. P. Zonenshain, T. C. Moore, C. A. Scholz & K. D. Klitgord, 1992. Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology 20: 589–592.Google Scholar
  15. Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137–146.Google Scholar
  16. Kozhov, M. M., 1955. Seasonal and annual variation in the plankton of Lake Baikal. Proc. All Union Hydrobiol. Soc., Acad. Sci. USSR. 6: 133–157. (in Russian)Google Scholar
  17. Kozhov, M. M., 1963. Lake Baikal and Its Life. Dr. W. Junk Publishers, The Hague.Google Scholar
  18. Krausse, G. L., C. L. Schelske & C. O. Davis, 1983. Comparison of three wet-alkaline methods of digestion of biogenic silica in water. Freshwat. Biol. 13: 73–81.Google Scholar
  19. Leinen, M., 1977. A normative calculation technique for determining opal in deep-sea sediments. Geochim. Cosmochim. Acta 41: 671–676.Google Scholar
  20. Lipman, P. W., N. A. Logatchev, Yu. A. Zorin, C. E. Chapin, V. Kovalenko & P. Morgan, 1989. Intercontinental rift comparisons. EOS Trans. Amer. Geophys. Union 70: 578–579, 586–587.Google Scholar
  21. Logatchev, N. A., I. V. Antoshchenko-Olenev, B. B. Bazarovet al., 1974. The Highlands of the Baikal Region and Trans-Baikalia. Academy of Sciences, Moscow, 359 pp. (in Russian).Google Scholar
  22. Lorefice, G. J. & M. Munawar, 1974. The abundance of diatoms in the southwestern nearshore region of Lake Ontario during the spring thermal bar period. In: Proc. Seventeenth Conf. Great Lakes Res., Internat. Assoc. Great Lakes Res: 619–628.Google Scholar
  23. Lund, J. W. G., 1966. The importance of turbulence in the periodicity of certain freshwater species of the genusMelosira. Bot. Zhur. 51: 176–187. (in Russian)Google Scholar
  24. Mortlock, R. A. & P. N. Froelich, 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res. 36: 1415–1426.Google Scholar
  25. Pilskaln, C. H., 1992. The sedimentation role of seasonal biogeochemical particle fluxes in Lakes Malawi and Baikal. EOS Trans. Amer. Geophys. Union 73: 197.Google Scholar
  26. Pilskaln, C. H. & J. B. Paduan, 1992. Laboratory techniques for the handling and geochemical analysis of water column particulate and surface sediment samples. MBARI Tech. Rept. No. 92–9, 22 pp.Google Scholar
  27. Popovskaya, G. I., 1991. Phytoplankton of Lake Baikal and its long-term changes (1958–1990). Dissertation Abstract: Academy of Sciences, Siberian Division, Central Siberian Botanical Garden, Novosibirsk, 32 pp. (in Russian)Google Scholar
  28. Shimaraev, M. N., N. G. Granin & A. A. Zhdanov, 1993. Deep ventilation of Lake Baikal waters due to spring thermal bar. Limnol. Oceanogr. 38: 1068–1072.Google Scholar
  29. Skvortzow, B. W., 1937. Bottom diatoms from Olhon Gate of Lake Baikal, Siberia. Philipp. J. Sci. 62: 293–277.Google Scholar
  30. Skvortzow, B. W. & C. I. Meyer, 1928. A contribution to the diatoms of Lake Baikal. Proc. Sungaree River Biological Sta. 12: 1–55.Google Scholar
  31. Stoermer, E. F., 1975. Comparison of benthic diatom communities in Lake Michigan and Lake Superior. Verh. int. Ver. Limnol. 19: 932–938.Google Scholar
  32. Stoermer, E. F., R. G. Kreis Jr. & L. Sicko-Goad, 1981. A systematic, quantitative, and ecological comparison of two species of the diatom genusMelosira from the Laurentian Great Lakes. J. Great Lakes Res. 7: 345–356.Google Scholar
  33. Stoermer, E. F., J. P. Kociolek, C. L. Schelske & D. J. Conley, 1985a. Siliceous microfossil succession in the recent history of Lake Superior. Proc. Acad. Nat. Sci. Philadelphia 137: 106–118.Google Scholar
  34. Stoermer, E. F., J. A. Wolin, C. L. Schelske & D. J. Conley, 1985b. An assessment of ecological changes during the recent history of Lake Ontario based on siliceous microfossils preserved in the sediments. J. Phycol. 21: 257–276.Google Scholar
  35. Stoermer, E. F., J. A. Wolin, C. L. Schelske & D. J. Conley, 1985c. Variations inMelosira islandica valve morphology in Lake Ontario sediments related to eutrophication and silica depletion. Limnol. Oceanogr. 30: 414–418.Google Scholar
  36. Stoermer, E. F., Y.-z. Qi & T. B. Ladewski, 1986. A quantitative investigation of shape variation inDidymosphenia (Lyngb.) M. Schmidt. Phycologia 25: 494–502.Google Scholar
  37. Stoermer, E. F., C. L. Schelske & J. A. Wolin, 1990. Siliceous microfossil succession in the sediments of McLeod Bay, Great Slave Lake, Northwest Territories. Can. J. Fish. Aquat. Sci. 47: 1865–1874.Google Scholar
  38. Stoermer, E. F., J. A. Wolin & C. L. Schelske, 1993. Paleolimnological comparison of the Laurentian Great Lakes based on diatoms. Limnol. Oceanogr. 38: 1311–1316.Google Scholar
  39. Thayer, V. L., T. C. Johnson & H. J. Schrader, 1983. Distribution of diatoms in Lake Superior sediments. J. Great Lakes Res. 9: 508–516.Google Scholar
  40. Williams, D. F., L. Qui, E. Karabanov & A. Gvozdkov, 1993. Geochemical indicators of productivity and sources of organic matter in surficial sediments of Lake Baikal. Geologiya i Geofizika 34: 111–125.Google Scholar
  41. Zorin, Yu. A., G. N. Glevskiy, V. A. Globevet al., 1977. An Outline of the Subsurface Structure of the Baikal Rift, Novosibirsk, 153 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • E. F. Stoermer
    • 1
  • M. B. Edlund
    • 1
  • C. H. Pilskaln
    • 2
  • C. L. Schelske
    • 3
  1. 1.Center for Great Lakes and Aquatic SciencesUniversity of MichiganAnn ArborUSA
  2. 2.Department of OceanographyUniversity of MaineOronoUSA
  3. 3.Department of Fisheries and AquacultureUniversity of FloridaGainesvilleUSA

Personalised recommendations