Skip to main content
Log in

Charge density wave transition and superconductivity in 2H-NbSe2. Direct measurement of the penetration depth in a layered superconductor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Schawlow-Devlin self-inductance method of direct measurement of the penetration depth has been adapted for layered superconductors, for which this method is especially suitable because the calibration procedure is very simple for them. The ratio of coherence length to mean free path ξ0/l within the layer is deduced from the penetration depth measured by the new method and the resistivity, and is found to be 0.14 for a pure crystal of 2H-NbSe2 with RRR of about 50. The effect of the CDW transition on the superconductivity in 2H-NbSe2 is investigated through the measurement of the penetration depth. In addition to pure crystals, some modified crystals are investigated where the CDW transition is suppressed. The London penetration depth λL(0) as well as the superconducting transition temperatureT c show a slight but apparent increase with decreasing CDW transition temperature T D of the samples. Both behaviors may be explained by a decrease in the reduction ofN(EF) due to the suppression of the CDW transition, whereN(E F) is the density of states at the Fermi energy. The result also suggests a systematic increase of the ratio of effective mass to electron densitym∥/n of the electron system with the suppression of the CDW transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Moncton, J. D. Axe, and F. J. DiSalvo,Phys. Rev. B 16, 801 (1977).

    Google Scholar 

  2. M. Barmaz, L. R. Testardi, and F. J. DiSalvo,Phys. Rev. B 12, 4367 (1975).

    Google Scholar 

  3. T. F. Smith, R. N. Shelton, and R. E. Schwall,J. Phys. F 4, 2009 (1974).

    Google Scholar 

  4. P. Molinié, D. Jérome, and A. J. Grant,Phil. Mag. 30, 1091 (1974).

    Google Scholar 

  5. J. Friedel,J. Phys. (Paris)36, L-279 (1975).

    Google Scholar 

  6. D. J. Huntley and R. F. Frindt,Can. J. Phys. 52, 861 (1974).

    Google Scholar 

  7. D. J. Huntley,Phys. Rev. Lett. 36, 490 (1976).

    Google Scholar 

  8. P. Garoche, J. J. Veyssié, P. Manuel, and P. Molinié,Solid State Commun. 19, 455 (1976).

    Google Scholar 

  9. R. Sooryakumar and M. V. Klein,Phys. Rev. Lett. 45, 660 (1980).

    Google Scholar 

  10. R. Sooryakumar, M. V. Klein, and R. F. Frindt,Phys. Rev. B 23, 3222 (1981).

    Google Scholar 

  11. C. A. Balseiro and L. M. Falicov,Phys. Rev. Lett. 45, 662 (1980).

    Google Scholar 

  12. P. B. Littlewood and C. M. Varma,Phys. Rev. Lett. 47, 811 (1981).

    Google Scholar 

  13. K. Machida, T. Kōyama, and T. Matsubara,Phys. Rev. B 23, 99 (1981).

    Google Scholar 

  14. G. S. Grest, K. Levin, and M. J. Nass,Phys. Rev. B 25, 4562 (1982).

    Google Scholar 

  15. J. E. Graebner and M. Robbins,Phys. Rev. Lett. 36, 422 (1976).

    Google Scholar 

  16. N. Kobayashi, K. Noto, and Y. Muto,J. Low Temp. Phys. 27, 217 (1977).

    Google Scholar 

  17. L. F. Mattheiss,Phys. Rev. B 8, 3719 (1973).

    Google Scholar 

  18. J. E. Inglesfield,J. Phys. C 13, 17 (1980).

    Google Scholar 

  19. A. L. Schawlow and G. E. Devlin,Phys. Rev. 113, 120 (1958).

    Google Scholar 

  20. P. de Trey, Suso Gygax, and J.-P. Jan,J. Low Temp. Phys. 11, 421 (1973).

    Google Scholar 

  21. R. E. Schwall, G. R. Stewart, and T. H. Geballe,J. Low Temp. Phys. 22, 557 (1976).

    Google Scholar 

  22. D. E. Prober, R. E. Schwall, and M. R. Beaseley,Phys. Rev. B 21, 2717 (1980).

    Google Scholar 

  23. R. Delaplace, P. Molinié, and D. Jérome,J. Phys. (Paris)37, L-13 (1976).

    Google Scholar 

  24. R. R. Hake,Phys. Rev. 158, 356 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takita, K., Masuda, K. Charge density wave transition and superconductivity in 2H-NbSe2. Direct measurement of the penetration depth in a layered superconductor. J Low Temp Phys 58, 127–142 (1985). https://doi.org/10.1007/BF00682569

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682569

Keywords

Navigation