Advertisement

Journal of Low Temperature Physics

, Volume 58, Issue 1–2, pp 127–142 | Cite as

Charge density wave transition and superconductivity in 2H-NbSe2. Direct measurement of the penetration depth in a layered superconductor

  • K. Takita
  • K. Masuda
Article

Abstract

The Schawlow-Devlin self-inductance method of direct measurement of the penetration depth has been adapted for layered superconductors, for which this method is especially suitable because the calibration procedure is very simple for them. The ratio of coherence length to mean free path ξ0/l within the layer is deduced from the penetration depth measured by the new method and the resistivity, and is found to be 0.14 for a pure crystal of 2H-NbSe2 with RRR of about 50. The effect of the CDW transition on the superconductivity in 2H-NbSe2 is investigated through the measurement of the penetration depth. In addition to pure crystals, some modified crystals are investigated where the CDW transition is suppressed. The London penetration depth λL(0) as well as the superconducting transition temperatureT c show a slight but apparent increase with decreasing CDW transition temperature T D of the samples. Both behaviors may be explained by a decrease in the reduction ofN(EF) due to the suppression of the CDW transition, whereN(EF) is the density of states at the Fermi energy. The result also suggests a systematic increase of the ratio of effective mass to electron densitym∥/n of the electron system with the suppression of the CDW transition.

Keywords

Coherence Charge Density Penetration Depth Free Path Effective Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. E. Moncton, J. D. Axe, and F. J. DiSalvo,Phys. Rev. B 16, 801 (1977).Google Scholar
  2. 2.
    M. Barmaz, L. R. Testardi, and F. J. DiSalvo,Phys. Rev. B 12, 4367 (1975).Google Scholar
  3. 3.
    T. F. Smith, R. N. Shelton, and R. E. Schwall,J. Phys. F 4, 2009 (1974).Google Scholar
  4. 4.
    P. Molinié, D. Jérome, and A. J. Grant,Phil. Mag. 30, 1091 (1974).Google Scholar
  5. 5.
    J. Friedel,J. Phys. (Paris)36, L-279 (1975).Google Scholar
  6. 6.
    D. J. Huntley and R. F. Frindt,Can. J. Phys. 52, 861 (1974).Google Scholar
  7. 7.
    D. J. Huntley,Phys. Rev. Lett. 36, 490 (1976).Google Scholar
  8. 8.
    P. Garoche, J. J. Veyssié, P. Manuel, and P. Molinié,Solid State Commun. 19, 455 (1976).Google Scholar
  9. 9.
    R. Sooryakumar and M. V. Klein,Phys. Rev. Lett. 45, 660 (1980).Google Scholar
  10. 10.
    R. Sooryakumar, M. V. Klein, and R. F. Frindt,Phys. Rev. B 23, 3222 (1981).Google Scholar
  11. 11.
    C. A. Balseiro and L. M. Falicov,Phys. Rev. Lett. 45, 662 (1980).Google Scholar
  12. 12.
    P. B. Littlewood and C. M. Varma,Phys. Rev. Lett. 47, 811 (1981).Google Scholar
  13. 13.
    K. Machida, T. Kōyama, and T. Matsubara,Phys. Rev. B 23, 99 (1981).Google Scholar
  14. 14.
    G. S. Grest, K. Levin, and M. J. Nass,Phys. Rev. B 25, 4562 (1982).Google Scholar
  15. 15.
    J. E. Graebner and M. Robbins,Phys. Rev. Lett. 36, 422 (1976).Google Scholar
  16. 16.
    N. Kobayashi, K. Noto, and Y. Muto,J. Low Temp. Phys. 27, 217 (1977).Google Scholar
  17. 17.
    L. F. Mattheiss,Phys. Rev. B 8, 3719 (1973).Google Scholar
  18. 18.
    J. E. Inglesfield,J. Phys. C 13, 17 (1980).Google Scholar
  19. 19.
    A. L. Schawlow and G. E. Devlin,Phys. Rev. 113, 120 (1958).Google Scholar
  20. 20.
    P. de Trey, Suso Gygax, and J.-P. Jan,J. Low Temp. Phys. 11, 421 (1973).Google Scholar
  21. 21.
    R. E. Schwall, G. R. Stewart, and T. H. Geballe,J. Low Temp. Phys. 22, 557 (1976).Google Scholar
  22. 22.
    D. E. Prober, R. E. Schwall, and M. R. Beaseley,Phys. Rev. B 21, 2717 (1980).Google Scholar
  23. 23.
    R. Delaplace, P. Molinié, and D. Jérome,J. Phys. (Paris)37, L-13 (1976).Google Scholar
  24. 24.
    R. R. Hake,Phys. Rev. 158, 356 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • K. Takita
    • 1
  • K. Masuda
    • 1
  1. 1.Institute of Materials ScienceUniversity of TsukubaIbarakiJapan

Personalised recommendations