Skip to main content
Log in

Superconductivity and random disorder in the narrow and wide band limit

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the effects of a finite electronic bandwidth in a disordered superconductor by considering the current tight binding Anderson model of disorder and a mean field BCS interaction. A general relation, between the transition temperatureT c and the disorder averaged spectral density associated with the electron propagator between neighboring lattice sites is found which enables us to predict superconductivity in the disorder induced localized state. A reasonable interpolation, between weak and strong disorder, is investigated and it predicts a maximum bandwidth where superconductivity is destroyed. In this case,T c as a function of the disorder is shown for a few values of the hopping constant. A brief discussion of the model validity range and its applications to disordered granular superconductors is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson,J. Phys. Chem. Solids 11, 26 (1959).

    Google Scholar 

  2. This theorem has made possible the study of transport in dirty superconductors.

  3. J. W. Rowell and R. C. Dynes (unpublished), Reproduced in ref. 4.

  4. E. Abrahams, P. W. Anderson, D. C. Licciardello and T. V. Ramakkrishnam,Phys. Rev. Lett. 42, 673 (1979).

    Google Scholar 

  5. P. W. Anderson, K. A. Muttalib and T. V. Ramakkrishnam,Phys. Rev. B 28, 117 (1983).

    Google Scholar 

  6. M. Ma and P. A. Lee,Phys. Rev. B 32, 5658 (1985).

    Google Scholar 

  7. C. Wiecko and R. Allub,Phys. Rev. B 35, 2041 (1987).

    Google Scholar 

  8. P. W. Anderson,Phys. Rev. 109, 1492 (1958).

    Google Scholar 

  9. J. Bardeen, L. N. Cooper and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  10. P. Lloyd,J. Phys. C 2, 1717 (1969).

    Google Scholar 

  11. See, for example, G. D. Mahan, Many particle Physics, Plenum Press, New York and London (1981).

    Google Scholar 

  12. D. J. Thouless,J. Phys. C 3, 1559 (1970).

    Google Scholar 

  13. R. J. Elliot, J. A. Krumhanal and P. Leath,Rev. Mod. Phys. 46, 465 (1974).

    Google Scholar 

  14. P. L. Leath,Phys. Rev. 171, 725 (1968).

    Google Scholar 

  15. See, for example, M. A. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover INC, New York (1972).

    Google Scholar 

  16. R. Allub, A. Caro and C. Wiecko,Phys. Rev. B 36, 8823 (1987).

    Google Scholar 

  17. R. Allub, A. Caro and C. Wiecko,J. Low Temp. Phys. 75, 27 (1989).

    Google Scholar 

  18. R. Rangel. Talk at the workshop “Modern theory of solids”, Brasilia, International Center for Theoretical Physics, 1990.

  19. B. I. Shklovskii and B. Z. Spivak. “Scattering and interference effects in variable range hopping conductance”. Hopping transport in solids. Ed. by M. Polak and B. Shklovskii, Elsevier Science publishers B. V. 1991.

  20. Ernesto Medina and Merena Kardar.Phys. Rev. B 46, 9984 (1992-II).

    Google Scholar 

  21. R. Rangel and E. Medina. (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marín, F.P., Rangel, R. Superconductivity and random disorder in the narrow and wide band limit. J Low Temp Phys 92, 225–238 (1993). https://doi.org/10.1007/BF00682339

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682339

Keywords

Navigation