Advertisement

Journal of Low Temperature Physics

, Volume 68, Issue 5–6, pp 335–352 | Cite as

Flux vortex dynamics and electric fields in matched pinning systems

  • M. G. Blamire
Article

Abstract

The pinning of flux vortices in type II superconductors has been the subject of extensive research. Certain experiments have attempted to investigate this problem by the use of specially prepared pinning structures consisting of regular arrays of pinning centers. In this paper a theory relating to such experiments is described. This theory is based on the existence and properties of defects in an otherwise perfect vortex lattice which is commensurate with a pinning array consisting of a triangular lattice of holes in a superconducting thin film. A quantitative treatment predicts the existence and position of substructure on the critical current versus magnetic field curves in addition to the main peaks previously predicted to occur when the vortex and hole lattices are exactly matched. The theory also qualitatively describes the overall shape of these curves. An analysis of the temperature dependence of this substructure shows broad agreement with existing experimental results. The application of this theory to future experiments should allow a detailed investigation of vortex lattice elasticity and flux flow.

Keywords

Magnetic Field Vortex Thin Film Magnetic Material Main Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Yamafuji and F. Irie,Phys. Lett. A 25, 387 (1967).Google Scholar
  2. 2.
    R. Labusch,Crystal Lattice Defects 1, 1 (1969).Google Scholar
  3. 3.
    A. M. Campbell and J. E. Evetts,Adv. Phys. 21, 199 (1972).Google Scholar
  4. 4.
    A. I. Larkin and Yu. N. Ovchinnikov,J. Low Temp. Phys. 34, 409 (1979).Google Scholar
  5. 5.
    S. J. Mullock and J. E. Evetts,J. Appl. Phys. 57, 2588 (1985).Google Scholar
  6. 6.
    M. G. Blamire and J. E. Evetts,Phil. Mag. B 51, 421 (1985).Google Scholar
  7. 7.
    E. J. Kramer,J. Nucl. Mat. 72, 5 (1978).Google Scholar
  8. 8.
    J. Petermann,Z. Metallkunde 61, 724 (1970).Google Scholar
  9. 9.
    O. Daldini, P. Martolini, J. L. Olsen, and G. Berner,Phys. Rev. Lett. 32, 218 (1974).Google Scholar
  10. 10.
    O. Daldini, C. Leemann, and P. Martolini,Solid State Commun. 16, 509 (1975).Google Scholar
  11. 11.
    L. Dobrosavaljecic,J. Phys. (Paris)37, 23 (1976).Google Scholar
  12. 12.
    H. Raffy, J. C. Reynard, and E. Guyon,Solid State Commun. 11, 1679 (1972).Google Scholar
  13. 13.
    H. Raffy and E. Guyon,J. Phys. (Paris)39, 39, C6–648 (1978).Google Scholar
  14. 14.
    A. F. Hebard, A. T. Fiory, and S. Somekh,IEEE Trans. Mag. 13, 589 (1977).Google Scholar
  15. 15.
    A. T. Fiory, A. F. Hebard, and S. Somekh,Appl. Phys. Lett. 32, 73 (1978).Google Scholar
  16. 16.
    G. S. Mkrtchyan and V. V. Shmidt,Zh. Eksp. Teor. Fiz. 61, 367 (1971) [Sov. Phys. JETP 34, 195 (1972)].Google Scholar
  17. 17.
    H. M. Miesenbock,J. Low. Temp. Phys. 56, 1 (1984).Google Scholar
  18. 18.
    A. L. Fetter and P. C. Hohenberg, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), p. 817.Google Scholar
  19. 19.
    D. Saint-James, G. Sarma, and E. J. Thomas,Type II Superconductivity (Pergamon, Oxford, 1969).Google Scholar
  20. 20.
    R. P. Huebener,Magnetic Flux Structures in Superconductors (Springer-Verlag, 1979).Google Scholar
  21. 21.
    E. H. Brandt,J. Low Temp. Phys. 44, 33 (1981).Google Scholar
  22. 22.
    E. H. Brandt,J. Low Temp. Phys. 44, 59 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • M. G. Blamire
    • 1
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeEngland

Personalised recommendations