Skip to main content
Log in

Second sound very near Tλ

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The results of an experimental investigation of the evolution of planar, non-linear, second-sound pulses in superfluid4He, to within 650 nK of the λ-transition, are presented. A new method for extracting the second-sound velocity and damping is demonstrated. As predicted from two-fluid hydrodynamics, the pulses are well modeled by the solutions of Burgers' equation. The second-sound velocity (u 20) and damping (D 2) are extracted from fits of the model to the data. Damping data are obtained in this fashion to 3×10−7 in reduced temperature at saturated vapor pressure; nearly two decades closer to Tλ then any previous measurements. The superfluid density is extracted from theu 20 measurements and the critical exponent, ζ, is determined. A study of very large amplitude pulses near Tλ is also presented. These pulses extend well beyond the range of validity of Burgers' equation. The amplitude of the shock that forms at the trailing edge of the pulse is observed to saturate as a function of heater power and then decrease suddenly, as has been previously observed away from Tλ. However, the pulse shapes are quite different from any previously observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Greywall and G. Ahlers,Phys. Rev. Lett. 28, 1251 (1972);Phys. Rev. A 7, 2145 (1973).

    Google Scholar 

  2. L. S. Goldner and G. Ahlers,Phys. Rev. B 45, 13129 (1992).

    Google Scholar 

  3. L. S. Goldner, G. Ahlers, and R. Mehrota,Phys. Rev. B 43, 12861 (1991).

    Google Scholar 

  4. T. N. Turner,Phys. Fluids 26, 3227 (1983).

    Google Scholar 

  5. J. R. Torczynski,Phys. Fluids 27, 2636 (1984).

    Google Scholar 

  6. S. K. Nemirovskii and A. N. Tsoi,Pis'ma Zh. Eksp. Teor. Fiz. 35, 229 (1982) [JETP Lett. 35, 286 (1982)].

    Google Scholar 

  7. A. Yu. Iznankin and L. P. Mezhov-Deglin,Zh. Eksp. Teor. Fiz. 84, 1378 (1983) [Sov. Phys. JETP 57, 801 (1983)].

    Google Scholar 

  8. S. K. Nemirovskii and V. V. Lebedev,Zh. Eksp. Teor. Fiz. 84, 1729 (1983) [Sov. Phys. JETP 57, 1009 (1983)].

    Google Scholar 

  9. S. K. Nemirovskii,Zh. Eksp. Teor. Fiz. 91, 1363 (1986) [Sov. Phys. JETP 64, 803 (1986)].

    Google Scholar 

  10. S. K. Nemirovskii and A. N. Tsoi,Cryogenics 29, 985 (1989).

    Google Scholar 

  11. W. Fiszdon and M. v. Schwerdtner,J. Low Temp. Phys. 75, 253 (1989).

    Google Scholar 

  12. M. v. Schwerdtner, G. Stamm, and D. W. Schmidt,Phys. Rev. Lett. 63, 39 (1989).

    Google Scholar 

  13. M. v. Schwerdtner, G. Stamm, and W. Fiszdon,Adv. in Cryogenic Eng. 35, 141 (1990). Also presented atThe Third Soviet-German Symposium on Cryogenics, October 1989.

    Google Scholar 

  14. G. Stamm, M. v. Schwerdtner, and W. Fiszdon,Adv. in Cryogenic Eng. 35, 103 (1990). Also presented atThe Third Soviet-German Symposium on Cryogenics, October 1989.

    Google Scholar 

  15. S. K. Nemirovskii and D. W. Schmidt, Max-Planck-Institut für Strömungsforschung Bericht 8/1990 (Göttingen preprint).

  16. W. Fiszdon, M. v. Schwerdtner, G. Stamm, and W. Poppe,J. Fluid Mech. 212, 663 (1989).

    Google Scholar 

  17. L. S. Goldner, Ph.D. Thesis, University of California at Santa Barbara, Santa Barbara CA 93106 (USA), 1991.

    Google Scholar 

  18. W. Y. Tam and G. Ahlers,Phys. Rev. B 32, 5932 (1985).

    Google Scholar 

  19. L. E. de Long, O. G. Symko, and J. C. Wheatley,Rev. Sci. Instrum. 42, 147 (1971).

    Google Scholar 

  20. L. S. Goldner, N. Mulders, and G. Ahlers, inTemperature: Its Measurement and Control in Science and Industry, Edited by J. F. Schooley, Vol. 6 (American Institute of Physics, New York, 1992).

    Google Scholar 

  21. American Magnetics, P.O. Box 2509, 112 Flint Road, Oak Ridge, TN.

  22. A. Singsaas and G. Ahlers,Phys. Rev. B 29, 4951 (1984).

    Google Scholar 

  23. G. C. Straty and E. D. Adams,Rev. Sci. Instrum. 40, 1393 (1969).

    Google Scholar 

  24. H. Kierstead,Phys. Rev. 153, 258 (1967).

    Google Scholar 

  25. G. Ahlers,Phys. Rev. 171, 275 (1968).

    Google Scholar 

  26. G. Ahlers,J. Low Temp. Phys. 7, 361 (1972).

    Google Scholar 

  27. United States Department of the Interior, Bureau of Mines, Helium Operations, 1100 So. Fillmore, Amarillo, Texas 79101.

  28. S. Kitabatake and Y. Sawada,J. Phys. Soc. Japan 45, 345 (1978).

    Google Scholar 

  29. V. Steinberg, private communication.

  30. S. K. Nemirovskii, as quoted in M. O. Lutset, S. K. Nemirovskii, and A. N. Tsoi,Zh. Eksp. Teor. Fiz. 81, 249 (1981) [Sov. Phys. JETP 54, 127 (1981)].

    Google Scholar 

  31. I. M. Khalatnikov,An Introduction to the Theory of Superfluidity (Benjamin, N. Y., 1965).

    Google Scholar 

  32. R. A. Fisher, G. E. Brodale, E. W. Hornung, and W. F. Giauque,Rev. Sci. Instrum. 39, 108 (1968).

    Google Scholar 

  33. Private communication from Corning Glass Works, Corning, N.Y., 14830.

  34. G. Ahlers, inThe Physics of Liquid and Solid Helium, edited by K. H. Bennemann and J. B. Ketterson (Wiley, NY, 1976), Part I, Ch. 2.

    Google Scholar 

  35. S. J. Putterman,Superfliud Hydrodynamics (American Elsevier, New York, 1974).

    Google Scholar 

  36. G. Ahlers,Phys. Rev. A 8, 530 (1973).

    Google Scholar 

  37. S. Putterman and S. Garrett,J. Low Temp. Phys. 27, 543 (1977).

    Google Scholar 

  38. Unlike the pulse amplitudes, pulse lengths always refer to the length, from start to finish, of the pulse launched at the heater. This length is equal tou 20/v, wherev is the frequency of the haversine used to generate the pulse. This is an easily defined length, unlike any length that can be derived from the first pulse echo at the bolometer.

  39. Since the data points do not coincide for the two pulses, a cubic spline was used to interpolate between the points of the second pulse.

  40. H. J. Mikeska,Phys. Rev. 179, 166 (1969).

    Google Scholar 

  41. R. Haussmann,J. Low Temp. Phys. 88, 249 (1992).

    Google Scholar 

  42. The area of the bolometer is taken to be 0.0645 cm2, the area of the square that confines it.

  43. L. Kramer,Phys. Rev. 179, 149 (1969).

    Google Scholar 

  44. V. L. Ginzburg and A. A. Sobyanin,Usp. Fiz. Nauk. 120, 153 (1976) [Sov. Phys. Usp. 19, 773 (1976)].

    Google Scholar 

  45. V. L. Ginzburg and A. A. Sobyanin,Phys. Lett. 69A, 417 (1979).

    Google Scholar 

  46. V. L. Ginzburg and A. A. Sobyanin,J. Low Temp. Phys. 49, 507 (1982).

    Google Scholar 

  47. In order to account for the round trip travel time of the pulse, Eq. (7) was used to determine the travel times of the pulse towards the bolometer (with the counterflow) and away from the bolometer (against the counterflow). The total travel time was of course the sum of the two, and the velocity in a heat current was extracted from this. It turns out that the term linear inw is quite small and the difference in travel times is therefore inconsequential.

  48. G. Ahlers,J. Low Temp. Phys. 84, 173 (1991).

    Google Scholar 

  49. G. Ahlers,Phys. Rev. Lett. 43, 1417 (1979).

    Google Scholar 

  50. M. J. Crooks and B. J. Robinson,Phys. Rev. B 27, 5433 (1983).

    Google Scholar 

  51. R. Mehrotra and G. Ahlers,Phys. Rev. B 30, 5116 (1984);Phys. Rev. Lett. 51, 2116 (1983).

    Google Scholar 

  52. B. I. Halperin, P. C. Hohenberg, and E. D. Siggia,Phys. Rev. B 13, 1299 (1976).

    Google Scholar 

  53. Note, however, that this model excludes the coupling to first sound, and that more recently, Pankert and Dohm54 have proposed an extension of model F that includes this coupling.

  54. J. Pankert and V. Dohm,Europhys. Lett. 2, 775 (1986);Phys. Rev. B 40, 10842 (1989);Phys. Rev. B 40, 10856 (1989).

    Google Scholar 

  55. V. Dohm,Phys. Rev. B 44, 2697 (1991).

    Google Scholar 

  56. V. Dohm,Z. Phys. B 61, 193 (1985).

    Google Scholar 

  57. R. Schloms and V. Dohm,Nucl. Phys. B328, 639 (1989).

    Google Scholar 

  58. W. Y. Tam and G. Ahlers,Phys. Rev. B 33, 183 (1986).

    Google Scholar 

  59. W. Y. Tam and G. Ahlers,Phys. Rev. B 37, 7898 (1988).

    Google Scholar 

  60. V. Dohm and R. Folk,Phys. Rev. Lett. 46, 349 (1981).

    Google Scholar 

  61. V. Dohm and R. Folk,Z. Phys. B 41, 251 (1981).

    Google Scholar 

  62. V. Dohm and R. Schloms, manuscript in preparation.

  63. V. Dohm, private communication.

  64. This can be calculated from information provided in Ref. 58.

    Google Scholar 

  65. V. Dohm,Z. Phys. B 60, 61 (1985).

    Google Scholar 

  66. To find σ, the contribution\(\Delta \sigma = \smallint _{T_0 }^{T_\lambda } (C_p /T)\) dT is subtracted from the value of the entropy at Tλ.

  67. J. A. Lipa and T. C. P. Chui,Phys. Rev. Lett. 51, 2291 (1983).

    Google Scholar 

  68. The formula used forC p and best fit values of the partameters were provided in a private communication from J. A. Lipa and T. C. P. Chui, October 1985.

  69. G. Ahlers, inPhase Transitions, edited by M. Levy, J.-C. Le Guillou, and J. Zinn-Justin (Plenum, NY, 1982), p. 1.

    Google Scholar 

  70. B. D. Josephson,Phys. Lett. 21, 608 (1966).

    Google Scholar 

  71. J. C. Le Guillou and J. Zinn-Justin,Phys. Rev. B 21, 3976 (1980).

    Google Scholar 

  72. D. Z. Albert,Phys. Rev. B 25, 4810 (1982).

    Google Scholar 

  73. J. C. LeGuillou and J. Zinn-Justin,J. Phys. Lett. (Paris)46, L-137 (1985).

    Google Scholar 

  74. F. J. Wegner,Phys. Rev. B 5, 4529 (1972).

    Google Scholar 

  75. A. Singsaas and G. Ahlers,Phys. Rev. B 30, 5103 (1984).

    Google Scholar 

  76. D. R. Swanson, T. C. P. Chui, and J. A. Lipa, preprint.

  77. D. Marek, J. A. Lipa, and D. Philips,Phys. Rev. B 38, 4465 (1988).

    Google Scholar 

  78. W. Y. Tam and G. Ahlers,J. Low Temp. Phys. 66, 173 (1987).

    Google Scholar 

  79. J. C. Cummings, D. W. Schmidt, and W. J. Wagner,Phys. Fluids 21, 713 (1978).

    Google Scholar 

  80. H. Liepmann and G. Laguna,Annu. Rev. Fluid Mech. 16, 139 (1984).

    Google Scholar 

  81. V. F. Vinen,Proc. Roy. Soc. Lond. A 242, 493 (1957).

    Google Scholar 

  82. K. W. Schwarz,Phys. Rev. B 38, 2398 (1988).

    Google Scholar 

  83. A. I. Gulyaev,Pis'ma Zh. Eksp. Teor. Fiz. 11, 332 (1970) [JETP Lett. 11, 221 (1970)].

    Google Scholar 

  84. A. I. Gulyaev,Zh. Eksp. Teor. Fiz. 57, 59 (1969) [Sov. Phys. JETP 30, 34 (1970)].

    Google Scholar 

  85. T. N. Turner,Physica 107B, 701 (1981).

    Google Scholar 

  86. A. Yu. Iznankin and L. P. Mezhov-Deglin,Proceedings of the 17th International Conference on Low Temperature Physics, edited by U. Eckern, A. Schmid, W. Weber, and H. Wuhl (North Holland, Amsterdam, 1984), p. 71.

    Google Scholar 

  87. R. V. Duncan, G. Ahlers, and V. Steinberg,Phys. Rev. Lett. 58, 377 (1987).

    Google Scholar 

  88. R. V. Duncan and G. Ahlers,Jpn. J. Appl. Suppl. 26-3, 363 (1987).

    Google Scholar 

  89. R. J. Atkins and N. Fox,J. Phys. C 20, 1937 (1987).

    Google Scholar 

  90. R. J. Atkins and N. Fox,J. Phys. C 19, 6963 (1986).

    Google Scholar 

  91. R. J. Atkins and N. Fox,J. Phys. C 17, 1191 (1984).

    Google Scholar 

  92. R. J. Atkins and N. Fox,J. Phys. C 16, 1615 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldner, L.S., Mulders, N. & Ahlers, G. Second sound very near Tλ . J Low Temp Phys 93, 131–182 (1993). https://doi.org/10.1007/BF00682285

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682285

Keywords

Navigation