Skip to main content
Log in

Static and dynamic forces on a permanent magnet levitating between superconducting surfaces

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A charged magnetic microsphere (radius 100 µm) is levitating inside a superconducting niobium capacitor. Because of its charge of about 1 pC, oscillations about the equilibrium position can be excited and detected electrically. The properties of this oscillator are investigated in order to study the static and dynamic forces of magnetic levitation. We find resonance frequencies between 200 Hz and 600 Hz. The resonance frequency and the damping are amplitude dependent due to nonlinear return forces and nonlinear friction, respectively. At small amplitudes the Q value is about 106 in vacuum. A dc field can be applied to change the equilibrium position and consequently the resonance frequency. From the data the spatial dependence of the static force and of the dynamic stiffness can be determined and an empirical relation between both is established. Quite often, we find a hysteretic behavior of the static force whereas the stiffness is a reversible function of the position. Amplitude dependent damping is observed both in the decay of the free oscillations and in the dependence of the amplitude of the forced oscillations on the driving force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. C. Moon, K.-C. Weng, and P.-Z. Chang,J. Appl. Phys. 66, 5643 (1989).

    Google Scholar 

  2. P.-Z. Chang, F. C. Moon, J. R. Hull, and T. M. Mulcahy,J. Appl. Phys. 67, 4358 (1990).

    Google Scholar 

  3. B. R. Weinberger, L. Lynds, and J. R. Hull,Supercond. Sci. Technol. 3, 381 (1990).

    Google Scholar 

  4. S. A. Basinger, J. R. Hull, and T. M. Mulcahy,Appl. Phys. Lett. 57, 2942 (1990).

    Google Scholar 

  5. V. V. Nemoshkalenko, E. H. Brandt, A. A. Kordyuk, and B. G. Nikitin,Physica C 170, 481 (1990).

    Google Scholar 

  6. P. Esquinazi,J. Low Temp. Phys. 85, 139 (1991).

    Google Scholar 

  7. K. Gloos, J. H. Koivuniemi, W. Schoepe, J. T. Simola, and J. T. Tuoriniemi,Physica B,165 & 166, 119 (1990).

    Google Scholar 

  8. P. Eizinger, W. Schoepe, K. Gloos, J. T. Simola, and J. T. Tuoriniemi,Physica B 178, 340 (1992).

    Google Scholar 

  9. In Fig. 9 of Ref. 8 the voltage interval was too limited to observe a deviation from an apparently linear voltage dependence of the frequency.

  10. L. D. Landau and E. M. Lifshitz,Lehrbuch der Theoretischen Physik, Vol. 1 (Akademie-Verlag, Berlin, 1979).

    Google Scholar 

  11. R. Zurmühl,Praktische Mathematik für Ingenieure und Physiker (Springer-Verlag, Berlin, 1962).

    Google Scholar 

  12. E. H. Brandt, P. Esquinazi, and H. Neckel,J. Low Temp. Phys. 63, 187 (1986).

    Google Scholar 

  13. K. M. Sattler,Diploma thesis (Universität Regensburg, unpublished, 1992).

  14. N. N. Bogoljubow and J. A. Mitropolski,Asymptotische Methoden in der Theorie der nichtlinearen Schwingungen (Akademie-Verlag, Berlin, 1965).

    Google Scholar 

  15. K. Gloos, W. Schoepe, J. T. Simola, and J. T. Tuoriniemi,Cryogenics 32, 791 (1992).

    Google Scholar 

  16. H. Barowski and W. Schoepe, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barowski, H., Sattler, K.M. & Schoepe, W. Static and dynamic forces on a permanent magnet levitating between superconducting surfaces. J Low Temp Phys 93, 85–100 (1993). https://doi.org/10.1007/BF00682282

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682282

Keywords

Navigation