Skip to main content
Log in

The dispersion of3He quasiparticles in He II from neutron scattering

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In an inelastic neutron scattering (INS) experiment on3He-4He mixtures one observes, besides the photon-roton mode which is barely modified by the admixture of3He, an additional excitation at lower energies which is interpreted as quasi-particle-hole excitations of a nearly free Fermi gas. We reanalyse INS data ofx 3=1% and 4.5% mixtures at various pressures to extract the mean energy\(\hat \omega _q \) of the fermions. In the momentum range 9<q<17 nm−1 (above 2k F )\(\hat \omega _q \) follows very closely the relation\(\hat \omega _q \)=A 2 q 2+A 4 q 4 at all concentrations, pressures and temperatures observed. In a 4.5% mixture (T F ≈0.3 K), measurements were performed for temperatures in the range 0.07<T<0.9 K. We find bothA 2 andA 4 to be strongly temperature dependent. For the interpretation of thermodynamical properties, the single particle energy ε k is parametrized as ε k o+1/(2ms*) ·k 2 · (1+γk 2). Neglecting interactions between fermions, we calculate from the free-particle ε k the scattering functionS(q, ω) and the mean value of the fermion peak energy ω q =∫ ωS 3(q, ω)dω/∫S 3(q, ω)dω. We find that\(\hat \omega _q \) follows closely ε q , deviating at most by 10%. A comparison to the measuredA 2 andA 4 directly yieldsms* (x 3,p, T) and γ(x 3,p, T). In the limitx 3=0,p=0 andT=0, the density and concentration dependence of the inertial mass is in excellent agreement with values found by Sherlock and Edwards. The temperature dependence of the specific heat data from Greywall and Owers-Bradleyet al. are well represented by our model atT<0,5 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and I. Pomeranchuk,Doklad. Akad. Nauk SSSR 59, 669 (1948).

    Google Scholar 

  2. N. R. Brubacker, D. O. Edwards, R. E. Sarwinski, E. Seligmann, and R. A. Sherlock,Phys. Rev. Lett. 25, 715 (1970);J. Low Temp. Phys. 3, 619 (1970).

    Google Scholar 

  3. R. M. Bowley, “Excitations in 2-Dimensional and 3-Dimensional Quantum Fluids,” A. F. G. Wyatt and H. J. Lauter, Eds., NATO ASI, Plenum, New York, 257 (1991).

    Google Scholar 

  4. D. Greywall,Phys. Rev. Lett. 41, 177 (1978);Phys. Rev. B 20, 2643 (1979).

    Google Scholar 

  5. L. A. Pogorelov, B. N. Esel'son, O. S. Nosovitskaya, and V. I. Sobolev,Fiz. Nizk. Temp. 5, 83 (1979), inSov. J. Low Temp. Phys. 5(1), 40 (1979).

    Google Scholar 

  6. J. M. Rowe, D. L. Price, and G. E. Ostrowski,Phys. Rev. Lett. 31, 510 (1973).

    Google Scholar 

  7. P. A. Hilton, R. Scherm, and W. G. Stirling,J. Low Temp. Phys. 27, 851 (1977); R. Scherm, W. G. Stirling, and P. A. Hilton,J. Phys. (Paris) Colloq. 39, C6–198 (1978). In Hiltonet al., a very unfortunate choice of graphical symbol—the large full width at half maximum of the ph-excitation was rendered with the symbol usually reserved for error bars—suggests to the uninitiated reader that the observed dispersion ε k is compatible with about any of the proposed ε k .

    Google Scholar 

  8. B. Fåk, K. Guckelsberger, M. Körfer, R. Scherm, and A. J. Dianoux,Phys. Rev. B 41, 8732 (1990).

    Google Scholar 

  9. K. S. Pederson and R. A. Cowley,J. Phys. C: Solid State Phys. 16, 2671 (1983).

    Google Scholar 

  10. M. Lücke and A. Szprynger,Phys. Rev. B 26, 1374 (1982); A. Szprynger and M. Lücke,Phys. Rev. B 32, 4442 (1985).

    Google Scholar 

  11. R. Scherm, K. Guckelsberger, A. Stunault, and B. Fåk, in “Excitations in 2-Dimensional and 3-Dimensional Quantum Fluids,” p. 231. A. F. G. Wyatt and H. J. Lauter, Eds., NATO ASI, Plenum, New York (1991).

    Google Scholar 

  12. A. Stunault, L. K. H. Andersen, Y. Blanc, B. Fåk, H. Godfrin, K. Guckelsberger, and R. Scherm,Physica B 180 & 181, 926 (1992).

    Google Scholar 

  13. E. Manousakis and V. R. Pandharipande,Phys. Rev. B 33, 150 (1986).

    Google Scholar 

  14. W. Hsu, D. Pines, and C. H. Aldrich III,Phys. Rev. B 32, 7179 (1985).

    Google Scholar 

  15. G. Baym and C. Pethick, in “The Physics of Liquid and Solid Helium,” p. 123. Eds. K. H. Bennemann and J. B. Ketterson, Part II (Wiley, New York, 1978).

    Google Scholar 

  16. V. R. Pandharipande and N. Itoh,Phys. Rev. A 8, 2564 (1973).

    Google Scholar 

  17. C. Ebner and D. O. Edwards,Phys. Rep. C 2, 77 (1971).

    Google Scholar 

  18. D. S. Greywall,Phys. Rev. B 21, 1329 (1979).

    Google Scholar 

  19. A. Ghozlan and E. Varoquaux,Ann. Phys., Fr. 4, 239 (1979).

    Google Scholar 

  20. A. Th. A. M. deWaele and J. G. M. Kuerten, in “Progress in Low Temperature Physics,”XIII, 167 (1992).

  21. R. A. Sherlock and D. O. Edwards,Phys. Rev. A 8, 2744 (1973).

    Google Scholar 

  22. D. Greywall and M. A. Paalanen,Phys. Rev. Lett. 46, 1292 (1981).

    Google Scholar 

  23. R. M. Bowley,J. Low Temp. Phys. 71, 319 (1988).

    Google Scholar 

  24. J. R. Owers-Bradley, R. C. Main, R. M. Bowley, G. J. Batey, and R. J. Church,J. Low Temperature Phys. 72, 201 (1988).

    Google Scholar 

  25. G. E. Brown, C. J. Pethick, and A. Zaringhalam,J. Low Temperature Phys. 48, 349 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherm, R., Guckelsberger, K., Szprynger, A. et al. The dispersion of3He quasiparticles in He II from neutron scattering. J Low Temp Phys 93, 57–83 (1993). https://doi.org/10.1007/BF00682281

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682281

Keywords

Navigation