Advertisement

Journal of Low Temperature Physics

, Volume 72, Issue 5–6, pp 461–475 | Cite as

Pressure diffusion and sound absorption in spin-polarized quantum systems

  • K. D. Ivanova
  • A. E. Meyerovich
Article

Abstract

Pressure diffusion and related phenomena are studied in the cases of Fermi liquids and dilute gases with arbitary degree of quantum degeneracy. An equation is derived expressing the (spin) pressure diffusion ratio through partial viscosities of (spin) components of systems. The exact values of corresponding transport coefficients are given for the cases of spin-polarized Boltzmann or degenerate quantum gases and spin-polarized Fermi liquids. The influence of surface slip effects on diffusion properties of spin-polarized quantum systems is discussed. The results may be used for gaseous and liquid3He,3He ↑ -4He solutions, gases H ↑ and D ↑, and other spin-polarized or binary quantum systems.

Keywords

Viscosity Quantum System Surface Slip Related Phenomenon Transport Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Meyerovich, inProgress in Low Temperature Physics, Vol. 11, D. F. Brewer, eds (North Holland, Amsterdam, 1987), pp. 1–73; inAnomalous Phases of 3 He, W. P. Halperin and L. P. Pitaevski, eds. (North-Holland, Amsterdam, to be published).Google Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon, New York, 1978).Google Scholar
  3. 3.
    A. E. Meyerovich,J. Low Temp. Phys. 47, 271 (1982);53, 487 (1983).Google Scholar
  4. 4.
    V. Zhdanov, Yu. Kagan, and A. Sazykin,Sov. Phys. JETP 15, 596 (1962) [Zh. Eksp. Teor. Fiz. 42, 857 (1962)].Google Scholar
  5. 5.
    J. O. Hirschfelder, C. F. Curtis, and R. B. Bird,Molecular Theory of Gases and Liquids (Wiley, New York, 1954).Google Scholar
  6. 6.
    C. Lhuillier and F. Laloe,J. Phys. (Paris)43, 197, 225 (1982).Google Scholar
  7. 7.
    W. J. Mullin and K. Miyake,J. Low Temp. Phys. 53, 313 (1983).Google Scholar
  8. 8.
    J. W. Jeon and W. J. Mullin,J. Low Temp. Phys. 67, 421 (1987).Google Scholar
  9. 9.
    R. J. Curch, J. R. Owers-Bradley, P. C. Main, T. M. M. Hampson, M. McHale, and R. M. Bowley,Jpn. J. Appl. Phys. 26 (Suppl. 26-3), 209 (1987); T. M. M. Hampson, R. M. Bowley, D. Brugel, and G. McHale,J. Low Temp. Phys., to be published.Google Scholar
  10. 10.
    A. E. Meyerovich,Phys. Lett. A 69, 279 (1978).Google Scholar
  11. 11.
    R. H. Anderson, C. J. Pethick, and K. F. Quader,Phys. Rev. B 35, 1620 (1987).Google Scholar
  12. 12.
    E. M. Lifshitz and L. P. Pitaevski,Physical Kinetics (Pergamon Press, Oxford, 1981), §14.Google Scholar
  13. 13.
    J. P. Breton,Physica 50, 365 (1970); V. M. Zhdanov and V. A. Zaznoba,Prikladnaya Mat. Mekh. 45, 1063 (1981).Google Scholar
  14. 14.
    H. H. Jensen, H. Smith, P. Wölfle, K. Nagai, and T. M. Bisgaard,J. Low Temp. Phys. 41, 473 (1980).Google Scholar
  15. 15.
    W. J. Mullin,Phys. Rev. Lett. 57, 2710 (1986).Google Scholar
  16. 16.
    A. E. Meyerovich,Pis'ma Zh. Eksp. Teor. Fiz. 46, 77 (1987) [Sov. Phys. JETP Lett. 46 (1987)].Google Scholar
  17. 17.
    M. Leduc, P. J. Nacher, D. S. Betts, J. M. Daniels, G. Tastevin, and F. Laloë,Europhys. Lett. 4, 59 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • K. D. Ivanova
    • 1
  • A. E. Meyerovich
    • 1
  1. 1.Institute for Physical ProblemsMoscowUSSR

Personalised recommendations