Journal of Low Temperature Physics

, Volume 52, Issue 5–6, pp 481–496 | Cite as

Magnetic properties of RE2Mo2O7 pyrochlores

  • R. Ranganathan
  • G. Rangarajan
  • R. Srinivasan
  • M. A. Subramanian
  • G. V. Subba Rao


The magnetic properties of RE2Mo2O7 (RE=Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, and Yb3+) and of solid solutions of the type (Nd1−xA x )2Mo2O7 (A=Yb or Er; 0.05≤x≤0.4) have been studied using an ac mutual inductance bridge. All the compounds were found to exhibit magnetic ordering in the neighborhood of or below 77 K. The data have been analyzed using (i) the available susceptibility data on Y2Mo2O7, (ii) a ferromagnetic coupling among the Mo4+ ions to obtain the contribution from the RE3+ ion, and (iii) the available susceptibility data on RE2Ti2O7 to obtain the contribution from the Mo4+ ions. It was found that procedure (iii) gave the most satisfactory explanation of the magnetic ordering. The results indicated that (1) the Mo4+ ions become ordered magnetically, (2) the behavior of the RE3+ ions is almost the same as in the isostructural RE2Ti2O7 and RE2V2O7 compounds, and (3) the susceptibility values differ appreciably as we go from Nd3+ to Yb3+, possibly due to narrowing of the π* Mo-O conduction band.


Solid Solution Magnetic Property Conduction Band Magnetic Material Mutual Inductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao,Progress in Solid State Chemistry (in press).Google Scholar
  2. 2.
    G. V. Bazuev, O. V. Markerova, V. Z. Oboldin, and G. P. Shevikin,Sov. Phys. Solid State 19 (11), 1913 (1977).Google Scholar
  3. 3.
    T. Shin-ike, G. Adachi, and J. Shiokawa,Mater. Res. Bull. 12, 1149 (1977).Google Scholar
  4. 4.
    J. E. Greedan,Mater. Res. Bull. 14, 13 (1979).Google Scholar
  5. 5.
    P. H. Hubert,Bull. Soc. Chem. France 1974, 2385.Google Scholar
  6. 6.
    M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao,Mater. Res. Bull. 15, 1401 (1980).Google Scholar
  7. 7.
    A. Manthiram and J. Gopalakrishnan,Indian J. Chem. 19A, 1042 (1980).Google Scholar
  8. 8.
    R. Ranganathan and G. Rangarajan,Pramana 19, 65 (1982).Google Scholar
  9. 9.
    W. A. Fietz,Rev. Sci. Instrum. 36, 1621 (1965).Google Scholar
  10. 10.
    J. R. VanGenuns, Thesis, Leiden University, quoted in H. W. J. Blote, R. F. Weielinga, and W. J. Huiskamp,Physica 43, 549 (1969).Google Scholar
  11. 11.
    J. D. Cashion, A. H. Cooke, M. J. M. Leask, T. L. Thoro, and M. R. Wells,J. Mater. Sci. 3, 402 (1968).Google Scholar
  12. 12.
    M. G. Townsend and W. A. Crossley,J. Phys. Chem. Solids 29, 593 (1968).Google Scholar
  13. 13.
    L. Soderholm, C. V. Stager, and J. E. Greedan,J. Solid State Chem. 43, 175 (1982).Google Scholar
  14. 14.
    L. Soderholm, J. E. Greedan, and M. F. Collins,J. Solid State Chem. 35, 385 (1980).Google Scholar
  15. 15.
    J. B. Goodenough, inProgress in Solid State Chemistry, H. Reiss, ed. (Pergamon, Oxford, 1971), Vol. 5.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • R. Ranganathan
    • 1
  • G. Rangarajan
    • 1
  • R. Srinivasan
    • 1
  • M. A. Subramanian
    • 2
  • G. V. Subba Rao
    • 2
  1. 1.Low Temperature Laboratory, Department of PhysicsIndian Institute of TechnologyMadrasIndia
  2. 2.Materials Science Research CentreIndian Institute of TechnologyMadrasIndia

Personalised recommendations