Journal of Low Temperature Physics

, Volume 52, Issue 5–6, pp 449–479 | Cite as

Two-dimensional imaging of hotspots in superconducting bridges by low-temperature scanning electron microscopy

  • R. Eichele
  • L. Freytag
  • H. Seifert
  • R. P. Huebener
  • John R. Clem


Hotspots generated in a thin-film superconductor through dissipation of Joule energy are imaged by scanning the sample with the electron beam of a scanning electron microscope equipped with a liquid He stage. The signal utilized for imaging is the change of the sample voltage caused by the beam irradiation. A theoretical analysis of the heat balance equation indicates that the voltage signal reaches a maximum at the hotspot boundaries where the temperature profile passes through the critical temperature value of the superconductor. The predictions of our theoretical model agree well with our experiments performed using films of pure Sn, O2-doped Sn, and O2-doped Al. The width of the signal peaks marking the hotspot boundaries is twice the thermal healing length of the film/substrate configuration.


Scanning Electron Microscope Electron Beam Temperature Profile Critical Temperature Magnetic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Huebener,Magnetic Flux Structures in Superconductors (Springer-Verlag, 1979).Google Scholar
  2. 2.
    W. J. Skocpol, M. R. Beasley, and M. Tinkham,J. Appl. Phys. 45, 4054 (1974).Google Scholar
  3. 3.
    R. P. Huebener,J. Appl. Phys. 46, 4982 (1975).Google Scholar
  4. 4.
    J. R. Clem and R. P. Huebener,J. Appl. Phys. 51, 2764 (1980).Google Scholar
  5. 5.
    R. Eichele, H. Seifert, and R. P. Huebener,Appl. Phys. Lett. 38, 383 (1981).Google Scholar
  6. 6.
    R. Eichele, R. P. Huebener, H. Pavlicek, and H. Seifert, inProceedings of the 16th International Conference on Low Temperature Physics, W. G. Clark, ed. (North-Holland, Amsterdam, 1981), Vol. II, p. 1029.Google Scholar
  7. 7.
    R. Eichele, R. P. Huebener, and H. Seifert,Verhandl. DPG)17, 1034 (1982).Google Scholar
  8. 8.
    R. Eichele, Thesis, University of Tübingen, Federal Republic of Germany (1982), unpublished.Google Scholar
  9. 9.
    M. Garbuny and M. Gottlieb, inHeat Flow Below 100 K and Its Technical Applications (Pergamon, New York, 1966).Google Scholar
  10. 10.
    G. Dharmadurai,Phys. Status Solidi A 62, 11 (1980).Google Scholar
  11. 11.
    W. J. Skocpol, inNonequilibrium Superconductivity, Phonons and Kapitza Boundaries, K. E. Gray, ed. (Plenum, New York, 1981), p. 559.Google Scholar
  12. 12.
    H. Pavlicek, L. Freytag, R. P. Huebener, and H. Seifert,Applied Superconductivity Conference, Knoxville, Tennessee (1982).Google Scholar
  13. 13.
    R. Eichele, W. Kern, and R. P. Huebener,Appl. Phys. 25, 95 (1981).Google Scholar
  14. 14.
    H. Seifert,Cryogenics 22, 657 (1982).Google Scholar
  15. 15.
    K. E. Gray,J. Low Temp. Phys. 23, 679 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • R. Eichele
    • 1
  • L. Freytag
    • 1
  • H. Seifert
    • 1
  • R. P. Huebener
    • 1
  • John R. Clem
    • 2
  1. 1.Physikalisches Institut IIUniversität TübingenTübingenFederal Republic of Germany
  2. 2.Ames Laboratory-USDOE and Department of PhysicsIowa State UniversityAmes

Personalised recommendations