Advertisement

Journal of Low Temperature Physics

, Volume 83, Issue 3–4, pp 155–164 | Cite as

Anisotropy-enhanced deviation functions in superconducting zinc and cadmium

  • M. C. Frischherz
  • B. M. Vlcek
  • F. M. Sauerzopf
  • H. W. Weber
  • E. Schachinger
Article
  • 19 Downloads

Abstract

The thermodynamic critical fields of zinc, cadmium, and molybdenum were measured down to 25 mK using an ac susceptibility method. Considerable downward shifts of the deviation function were found for Zn and Cd and analyzed in terms of anisotropic Eliashberg theory with large electron-phonon coupling anisotropy parameters 〈a2〉. In contrast to these two elements, isotropic behavior was found in superconducting molybdenum.

Keywords

Zinc Anisotropy Cadmium Molybdenum Magnetic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Clem,Ann. Phys. 40, 268 (1966).Google Scholar
  2. 2.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).Google Scholar
  3. 3.
    D. Markovitz and L. P. Kadanoff,Phys. Rev. 131, 563 (1963).Google Scholar
  4. 4.
    J. M. Daams and J. P. Carbotte,J. Low Temp. Phys. 43, 263 (1981).Google Scholar
  5. 5.
    L. Niel, N. Giesinger, H. W. Weber, and E. Schachinger,Phys. Rev. B 32, 2976 (1985).Google Scholar
  6. 6.
    E. Moser, E. Seidl, and H. W. Weber,J. Low Temp. Phys. 49, 585 (1982).Google Scholar
  7. 7.
    F. M. Sauerzopf, E. Moser, H. W. Weber, and F. A. Schmidt,J. Low Temp. Phys. 66, 191 (1987).Google Scholar
  8. 8.
    M. Prohammer and E. Schachinger,Phys. Rev. B 36, 8353 (1987).Google Scholar
  9. 9.
    H. W. Weber and E. Schachinger,Helv. Phys. Acta 61, 478 (1988).Google Scholar
  10. 10.
    H. W. Weber, E. Seidl, C. Laa, E. Schachinger, M. Prohammer, A. Junod, and D. Eckert,Phys. Rev. B (submitted).Google Scholar
  11. 11.
    J. L. Bostock and M. L. A. MacVicar, inAnisotropy Effects in Superconductors, H. W. Weber, ed. (Plenum, New York, 1977), p. 213.Google Scholar
  12. 12.
    B. Vlcek, E. Seidl, and H. W. Weber,Physica C 167, 198 (1990).Google Scholar
  13. 13.
    D. U. Gubser and J. E. Cox,Phys. Rev. B 7, 4118 (1973).Google Scholar
  14. 14.
    F. W. Smith,J. Low Temp. Phys. 5, 683 (1971).Google Scholar
  15. 15.
    P. T. Truant and J. P. Carbotte,Solid State Commun. 9, 1621 (1971).Google Scholar
  16. 16.
    R. E. Fassnacht and J. R. Dillinger,Phys. Rev. 164, 565 (1967).Google Scholar
  17. 17.
    J. F. Schooley,J. Low Temp. Phys. 12, 421 (1973).Google Scholar
  18. 18.
    N. E. Phillips,Phys. Rev. 134, A385 (1964).Google Scholar
  19. 19.
    W. H. Butler and P. B. Allen, inSuperconductivity in d- and f-Band Metals, D. H. Douglass, ed. (Plenum, New York, 1976), p. 73.Google Scholar
  20. 20.
    R. G. Mallon and H. E. Rohrschach,Phys. Rev. 158, 418 (1967).Google Scholar
  21. 21.
    A. Waleh and N. H. Zebouni,Phys. Rev. B 4, 2977 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • M. C. Frischherz
    • 1
  • B. M. Vlcek
    • 1
  • F. M. Sauerzopf
    • 1
  • H. W. Weber
    • 1
  • E. Schachinger
    • 2
  1. 1.Atominstitut der Österreichischen UniversitätenViennaAustria
  2. 2.Institut für Theoretische PhysikTechnische Universität GrazGrazAustria

Personalised recommendations